
1 March 1997 Delphi Informant

Cover Art By: Tom McKeith

March 1997, Volume 3, Number 3

Tweaking the
Interface

User-Pleasing Customization Techniques

ON THE COVER
6 How Much Longer? — Brad Olson
Some users reboot at the drop of a hat, unless they’re kept “in the
loop” for every long process. For the sake of consistency, here’s a
reusable component to communicate progress status.

11 Go Your Own Way — Derek Davidson
Custom images on the DBNavigator component? Not until now.
Mr Davidson proffers both a quick-and-dirty technique and a long,
thorough one, for your viewing satisfaction.

16 Key Issues — Alex Sumner
Nearly every DOS stalwart grudgingly using Windows has hit J
instead of F, causing a dialog box to vanish prematurely. Here’s
how to cater to retro-grouch users — without compromise.

FEATURES
22 Informant Spotlight — Ken Jenks
Keeping track of all your Web site’s image files during frequent
updates can be a real pain, unless you build a database and create an
interface to the Web server ... using Delphi, natch!

26 DBNavigator — Cary Jensen, Ph.D.
The Application object is hard to ignore; all applications refer to it at
least twice. Yet Dr Jensen exposes arcane, powerful techniques that
employ TApplication-class methods and properties.

30 OP Tech — Keith Wood
Delphi’s built-in random-number generator can produce almost any
probability distribution, and Mr Wood’s RandUtil unit helps you “do the
math” to randomize your games and simulations.

36 Sights & Sounds — Don Peer and Peter Dove
In this third step toward creating a 3D, rendered component, the inde-
fatigable Mr Dove and Mr Peer change parents (!) and endow their
project with the ability to map textures onto polygons.

41 At Your Fingertips — Robert Vivrette
This latest collection of tips and tricks includes how-to for wildcard file
deletes, and much more.

REVIEWS
43 NuMega’s BoundsChecker

Product Review by Robert Vivrette

DEPARTMENTS
2 Delphi Tools
4 Newsline
47 File | New by Richard Wagner

2 March 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Delphi Book

Delphi 32-Bit Programming Secrets
Tom Swan with Jeff Cogswell

IDG Books

ISBN: 1-56884-690-8
Price: US$44.99
(738 pages, Disk)
Phone: (800) 762-2974
HyperAct, Inc. released ver-
sion 4.0 of HyperTerp, a
drag-and-drop script language
VCL component for Delphi.

The features of HyperTerp
4.0 include a plug-in archi-
tecture that simplifies the
creation of language exten-
sions that work in multiple
projects; object-based syntax
support; new constructor
and destructor definitions
for object types; and
improved speed.

HyperTerp 4.0 supports user
forms, procedures and func-
tions, debugger interfaces,
arrays, tables, and objects.
Additional features include a
plug-in architecture allowing
users and third-party libraries
to create non-application spe-
cific custom extensions and

HyperTerp 4.0 for Delphi
object-based syntax. HyperAct
also released HyperTerp/PRO,
a professional interpreter
engine with documented
source code, in 16- and 32-bit
versions.

Price: HyperTerp 4.0, Standard
Version, US$249; upgrade for earlier
Standard Version users, US$50;
HyperTerp/PRO and source code,
US$395; upgrade for PRO users is free.
Contact: HyperAct, Inc., 3437 335th
St., West Des Moines, IA 50266
Phone: (515) 987-2910
Fax: (515) 987-2909
E-Mail: rhalevi@hyperact.com
Web Site: http://www.hyperact.com
dows
Data Junction Version 5.
Data Junction Corp., for-

merly Tools & Techniques,
Inc., of Austin, TX, has
released Data Junction
Version 5.11 for Windows,
a data conversion tool that
features additional formats
and improved SQL support.

Data Junction provides
complete data extraction,
filtering, manipulation, and
conversion, including legacy
mainframe, UNIX, and
desktop data. It acts as a
11 Now Available for Win
universal and neutral junc-
tion in the middle of all
structured data formats.
Additionally, it displays
source and target data struc-
tures on a single screen, and
provides advanced drag-and-
drop features to visually
map the source data to the
target structure. Because it
enables users to filter and
edit data during the conver-
sion, the output format can
be customized.

Users can convert
most structured,
field, and record-
oriented file formats.
Visual data browsers
and parsers have
been designed into
the product to assist
in defining difficult
file types.

Data Junction 5.11
supports Sybase bcp,
Informix DB Load,
HTML (export),
Oracle (native),
Informix/SE, Oracle
SQL Loader, and
IDAPI.
Data Junction 5.11 fea-
tures improved SQL sup-
port via ODBC, reworking
of data-type handling for
reconciliation of source-to-
target variations, ODBC
cursor support, and the
capability to save partial
conversions and point to
separate sets of conversions.
It also has a richer set of
command line parameters,
including automated execu-
tion and default expres-
sions. Additionally, locked
fields are now allowed in
target structures.

Price: US$299 for a single-user
license; US$499 for a two-user
network license. Network licenses
can be extended for US$100 per user
(includes a 30-day money-back
guarantee).
Contact: Data Junction Corp.,
2201 Northland Dr.,
Austin, TX 78756
Phone: (800) 580-4411 or
(512) 459-1308
Fax: (512) 459-1309
E-Mail: djinfo@datajunction.com
Web Site: http://www.datajunction.com

3 March 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

D

LMD Innovative Releases LMD-Tools Version 2.0

LMD Innovative of Siegen,

Germany has released LMD-
Tools Version 2.0, a set of
native Delphi VCL compo-
nents and routines for vari-
ous programming tasks.
The controls cover system,

multimedia, visual, and data-
sensitive and dialog compo-
nents. Component editors,
which allow visual setting of
properties and functions,
enable faster access and more
efficient work. Most of these
editors are available through
context menus by right-click-
ing on a component.

LMD-Tools Version 2.0 is
offered in standard and
advanced editions. The
Standard Edition contains
about 30 controls; the
Advanced Edition contains
about 60 controls (including
Nevrona Designs Ships A
those in the Standard
Edition). Both packages
include full source and
online Help. The advanced
version has more than 30
demonstration projects. Trial
versions and demonstrations
are available from LMD
Innovative’s Web site.
dHocery and Propel for D
Price: Standard Edition, US$69;
Advanced Edition, US$135.
Contact: LMD Innovative, Vor der
Hohler 17a, 57080 Siegen, Germany
Phone: 49-271-355489
Fax: 49-271-356952
E-Mail: sales@lmd.de
Web Site: http://www.lmd.de
elphi

Nevrona Designs of Mesa,

AZ has released AdHocery
Version 1.0, an ad hoc SQL
query interface building sys-
tem, and Propel Version 1.0,
a development reuse system.

AdHocery allows the cre-
ation of custom user inter-
faces, and hides tables, fields,
and master-detail links from
end-users at run time.

Programmers can use any
data-aware components with
AdHocery to create QBE-
style forms. It also includes:
TAdHocGrid, which allows
queries to be created within
a grid style layout with row
and cell connectives;
TAdHocOutline and
TAdHocTreeView, which dis-
play the logic of the query;
and TAdHocLookupGrid,
which allows the selection of
multiple items from a list to
be entered into a query.
Queries can be saved to disk,
and query forms created
with AdHocery usually
require no source code.

AdHocery will work with
any other tool that is com-
patible with TQuery compo-
nents, and can be used as a
front-end for reporting sys-
tems or on-screen queries.

Propel combines a form’s
code and components into
reusable units, called Features,
that can be saved to a local
library, shared with other
Propel users, or distributed
royalty-free as feature compo-
nents to non-Propel users.

During the creation of
Features, the programmer has
access to Delphi’s IDE,
including the form designer,
Object Inspector, and
debugger. Multiple Features
can be used on a single form,
and can share components
between them. When using a
Feature, the programmer can
change individual compo-
nent properties (such as posi-
tion or size), and can define
additional code for each
component, or replace com-
ponents with other types.

Trial versions and product
tours are available on
Nevrona’s Web site.

Price: AdHocery Version 1.0, US$149
(US$99 for ReportPrinter Pro users), 16-
and 32-bit versions include complete
source, printed documentation, and full
technical support; Propel Version 1.0,
US$199, 16- and 32-bit versions
include printed documentation and full
technical support.
Contact: Nevrona Designs, 1930 S.
Alma School Rd., Suite #B-214,
Mesa, AZ 85210-3041

Phone: (888) 776-4765
Fax: (602) 530-4823
E-Mail: info@nevrona.com
Web Site: http://www.nevrona.-
com/designs
Pattern-Oriented Software
Architecture: A System of

Patterns
Frank Buschmann, et al.
John Wiley & Sons, Inc.

ISBN: 0-471-95869-7
Price: US$39.95 (457 pages)
Phone: (212) 850-6000

esign Patterns: Elements of
Reusable Object-Oriented

Software
Erich Gamma, et al.

Addison-Wesley Publishing Co.

ISBN: 0-201-63361-2
Price: US$45.25 (395 pages)
Phone: (617) 944-3700

4 March 1997 Delphi Informant

News
L I N E

Mar ch 1997

Borland Adds Informix and DB2 Support to Delphi Client/Server Suite

Borland Completes Acquisition of
Open Environment Corp.
Scotts Valley, CA —
Borland has released
Informix and DB2 database
drivers for Delphi Client/-
Server Suite. The new 32-
bit drivers are part of the
Borland Database Engine
(BDE) with SQL Links
3.5, and include updated
support for Oracle, Sybase,
Microsoft SQL Server, and
Borland InterBase database
servers.

Delphi Client/Server
maintenance contract cus-
tomers and Connections
members will receive free
the new BDE with SQL
Links 3.5; other registered
Delphi Client/Server Suite
owners must call (800)
932-9994. These offers
apply only in the United
States and Canada. Inter-
A Sneak Peak at Borland
national customers should
contact their local Borland
office.

For a complete listing of
the features in the BDE with
SQL Links 3.5, visit Borland
Online at http://www.-
borland.com/bde/.
’s Upcoming Delphi 3
Delphi, Delphi Desktop,
and Delphi Developer own-
ers interested in the BDE
without the SQL Links can
download the software
from http://www.-
borland.com/techsupport/-
dbe/utilities.html.
Scotts Valley, CA —
Borland completed its
acquisition of Open
Environment Corp. in late
1996, and Open Environ-
ment is now a subsidiary of
Borland. The combined
operations of the two com-
panies will be conducted
under the Borland name
and will be headquartered
in Scotts Valley, CA.
Borland’s common stock
will continue to trade on
the Nasdaq National
Market System under the
symbol BORL. According
to the agreement between
Borland and Open Environ-
ment, each outstanding
share of Open Environment
stock has been converted
into .66 shares of Borland
common stock.
Scotts Valley, CA — Set for
release in the second quarter
of 1997, Delphi program-
mers will see many new fea-
tures and enhancements in
Delphi 3, including: a visual
multi-tier architecture; an
enterprise component
foundry; enterprise and
Internet client/server solu-
tions; the ability to distribute
database information over
the Web; and 32-bit opti-
mized native drivers for
InterBase, Oracle, Informix,
Sybase, SQL Server, IBM
DB2, Access, and FoxPro.

Delphi’s new technologies,
such as Remote Data Broker,
Packages, OLEnterprise, and
Internet enablement, allow
thin-client applications as
small as 15KB to be distrib-
uted, configured, and main-
tained.

Borland has added support
for Microsoft standards,
including COM and
ActiveX.

Delphi 3’s ActiveX controls
are native machine code
compiled, and don’t require a
distributable run-time envi-
ronment.

In addition, Delphi 3 uses
the ActiveX architecture to
deploy thin-client applica-
tions over the Web using
standard application delivery
mechanisms (File, INF, or
CAB File delivery).

Delphi 3 is interoperable
through COM interfaces with

“Delphi 3 Sneak Peak”
continued on page 5

5 March 1997 Delphi Informant

The Solution Works Awarded PSYBT
Young Business of the Year

ObjectSHOW Launches Online Trade ShowNews
L I N E

Mar ch 1997

The Solution Works principals, left to right: John Shiveral,
Andrew McKelvie, and Russell Sneddon.

Yocam Joins Borland
as Chairman and CEO

Delphi 3
Sneak Peak (cont.)
C++, Java, Visual Basic,
PowerBuilder, JavaScript, and
other languages.

In version 3, Delphi forms
can become ActiveForms.
These ActiveForms are
ActiveX controls that use
the Delphi form as a con-
tainer for other Delphi
components.

ActiveForms publish
ActiveX property pages and
type libraries for adding
functionality to other devel-
opment environments, such
as Internet Explorer, Visual
Basic, Optima, or
PowerBuilder. These forms
can also be used to deliver
applications over the
Internet.

To keep abreast of Delphi
3’s progress, visit
http://www.borland.com.
Flower Mound, Texas —
ObjectSHOW Inc. has
released the Developers’
Premier On-Line Trade
Show at http://www.-
ObjectSHOW.com.

The company offers
Delphi products, as well as
tools for Visual Basic,
Clipper, Java, C/C++, and
FoxPro developers. This
online trade show enables
viewers to see product
demonstrations and place
orders.

Vendors interested in
advertising their products
can reserve booth space for
a trial three-month period
at no cost.
Scotts Valley, CA —
Borland has appointed
Delbert W. Yocam, 52, a
senior executive from Apple
Computer, Inc. and
Tektronix, Inc., as chairman
of the Board of Directors
and chief executive officer.

Yocam served as executive
vice president and chief
operating officer for two
years at Apple, and presi-
dent of Apple Pacific for a
year. After Apple, Yocam
served as president and
chief operating officer of
Tektronix, a hardware tech-
nology company.
Glasgow, Scotland — The
Solution Works, a Greenock
information technology
company, has been named
The Prince’s Scottish Youth
Business Trust’s (PSYBT)
Young Business of the Year.
Formed in 1994, The
Solution Works specializes in
Delphi development.

Founders Andrew
McKelvie (26), Russell
Sneddon (25), and John
Shiveral (25) began this ven-
ture with a loan from
PSYBT. Today the compa-
ny’s clientele includes the
Overseas Development
Administration, The
Environment Agency,
Scottish Widows, and
Scottish Milk.

For more information
call 44+ (0) 4175-743030 or
e-mail 100544.3545@com-
puserve.com.
McGraw-Hill Books Online
McGraw-Hill has announced the
launch of Beta Books, an online
program that makes its computer
titles available to the public three
months prior to publication. Two

new computing books will be
posted on the Web each month,
in their entirety. The books are
trade titles that cover Internet-
related topics. Beta Books can

be found at McGraw-Hill’s
Web site at http://www.comput-

ing.mcgraw-hill.com.

6 March 1997 Delphi Informant

On the Cover
Delphi 1 / Delphi 2

By Brad Olson

Figure 1: ProcessingForm at de
How Much Longer?
Building a Status Gauge Dialog Box Component

In the July 1996 issue of Delphi Informant, James Callan explored user
interface strategies for maintaining users’ patience when your program

runs long processes. Callan showed that by using progress indicators and
different cursors, you can keep users informed during processing delays.
sig
When showing a user progress status, it is
important to remain consistent. Many users
want to know only a few things about
process status: they want to see text describ-
ing what is happening, and they want to
know how much of the process has complet-
ed. And finally, they want some way to can-
cel the process.

One sure way to remain consistent throughout
your applications is to use VCL components in
your development.

This article presents a way to implement a
progress dialog control. It expands upon the
concepts espoused in Callan’s article. The result
is a reusable component for communicating
progress status to the user.

Component Requirements
To provide satisfying status information to
the user, the component should:

present a modal form to the user when a
process is active,
allow the program to update the status
display, and
provide the user with a way to cancel the
process.

Additionally, the component should be a
reusable dialog component similar
to those found on the Dialogs
page of the Component palette,
with an Execute method that
returns True if the process com-
pletes or False if the user cancels
the process.n time.
If you’ve never created a dialog box compo-
nent, you may want to refer to chapter 13 of
Delphi’s Component Writer’s Guide. It’s dedi-
cated to creating this kind of component,
and provides an easy-to-follow example.
We’ll use similar steps to create the
TProcessingDialog component.

Create the Form and Add Components
The first step is to start a new project and
add the necessary components to the
default form. Then set the form’s properties
so it will behave like a modal dialog box at
run time. To do this, first set the
BorderStyle property to bsDialog and
Position to poScreenCenter. Then set the
Name property to ProcessingForm. Then,
add two visual components to the form: a
Gauge and a Label. Set the Label’s
Alignment property to taCenter.

Next, add a TBitBtn to the form and set the
Kind property to bkCancel. Using a TBitBtn
instead of a regular button will allow us to
indirectly control other properties of the but-
ton, such as Caption, Glyph, and Cancel, sim-
ply by setting the value of Kind.

The last control to add to ProcessingForm
is a TTimer control. Timer1 will be used to
manage the modal state of the form after
the process is either completed or canceled.
We’ll discuss the need for this control later;
for now simply set its Enabled property to
False, and its Interval property to 500
(milliseconds). Save the unit as
PRCDLG.PAS.

TStartProcessingProcedure = procedure of object;
TProcessingDialog = class(TComponent)
private

FCanceled : Boolean;

FFormCaption : string;
FProgress : Integer;

FStatusMessage : string;
FOnStartProcessing : TStartProcessingProcedure;

FProcessingForm : TProcessingForm;

procedure SetFormCaption(ACaption: string);
procedure SetProgress(AProgress: Integer);

procedure SetStatusMessage(AMessage: string);
public

constructor Create(AOwner: TComponent); override;
function Execute: Boolean;

published
property Canceled: Boolean read FCanceled

write FCanceled;

property FormCaption: string read FFormCaption

write SetFormCaption;

property Progress: Integer read FProgress

write SetProgress;

property StatusMessage: string read FStatusMessage

write SetStatusMessage;

property OnStartProcessing: TStartProcessingProcedure

read FOnStartProcessing write FOnStartProcessing;

end;

Figure 2: Declaration for the new component in the
PRCDLG.PAS unit, just below the ProcessingForm declaration.

function TProcessingDialog.Execute: Boolean;

begin
Result := False;

if Assigned(FOnStartProcessing) then
begin

FProcessingForm:= TProcessingForm.Create(Application);

try
if Assigned(FProcessingForm) then

with FProcessingForm do begin
Caption := FormCaption;

Gauge1.Progress := Progress;

Label1.Caption := StatusMessage;

MyProcessingDialogControl := Self;

end;
Canceled := False;

Result := (FProcessingForm.ShowModal = mrOk);

Canceled := not Result;

finally
FProcessingForm.Free;

FProcessingForm := nil;
end;

end
else

MessageDlg('No OnStartProcessing handler defined.',

mtError, [mbCancel], 0);

end;

Figure 3: TProcessingDialog’s Execute method.

On the Cover
Create the Wrapper
Now that we’ve created ProcessingForm (see Figure 1), we must
create the component wrapper. The component,
TProcessingDialog, will descend from TComponent. Create the
declaration for the new component in the PRCDLG.PAS unit
just below the ProcessingForm declaration, as shown in Figure 2.

The process is controlled in TProcessingDialog’s Execute
method, as shown in Figure 3. Execute returns True if the
process completed, and False if the user pressed Cancel. Notice
that the control creates a new instance of TProcessingForm each
7 March 1997 Delphi Informant
time Execute is called. The try..finally block ensures the
instance is disposed of before Execute is finished. Also note that
the Execute method does not show TProcessingForm if no event
handler is assigned to OnStartProcessing.

The control publishes four properties (Canceled,
FormCaption, Progress, and StatusMessage) and one event
(OnStartProcessing). The program can check the value of
Canceled while the process is running to determine if the user
has pressed Cancel. FormCaption is simply the title of the
modal form that is displayed during the process. The default
value of Processing can be changed by accessing this property.

Progress and StatusMessage are the two properties that should
be continually updated during a long process. They give the
user a visual indication of what is going on and how much
has been completed. StatusMessage is displayed in Label1 of
ProcessingForm. The Progress property is directly passed
through to the Progress property of Gauge1.

The control also publishes an OnStartProcessing event han-
dler. The program will implement its process in the handler
for this event. OnStartProcessing is called indirectly by calling
the Execute method for the control.

The property access methods (the read and write specifiers)
for each of the properties are shown in PRCDLG.PAS (see
Listing One on page 10).

Modify the Form
Before examining how the control operates, we must return
to TProcessingForm and further modify its definition. One
modification is to add two public data members:

public
MyProcessingDialogControl : TProcessingDialog;

DesiredModalResult : TModalResult;

MyProcessingDialogControl is used by the form to communi-
cate with the TProcessingDialog that created the form. The
DesiredModalResult data field determines if the user pressed
the button on the form.

We need to add some code to initialize the values of the new
data members. Both can be set in the FormCreate method of
the TProcessingForm. Create the OnCreate event handler for
the form as shown here:

procedure TProcessingForm.FormCreate(Sender: TObject);

begin
DesiredModalResult := mrNone;

{ Initial value is set to mrNone; this can only be set if
the user presses the button on the form. }

MyProcessingDialogControl := nil;
{ Execute will create and free its own instance of a

TProcessingDialog. }
end;

DesiredModalResult and Timer1 work together to control the
modal state of ProcessingForm. We’ll discuss the need for
these two pieces in the next section, “Timing Is Everything.”

On the Cover

procedure TProcessingForm.FormActivate(Sender: TObject);

begin
if Assigned(MyProcessingDialogControl) then

MyProcessingDialogControl.OnStartProcessing;

if (DesiredModalResult = mrNone) then
{ The user did not press the button during the process

(if so, DesiredModalResult would equal mrCancel). Make
the button an OK button. }

BitBtn1.Kind := bkOk;

Timer1.Enabled := True;

end;

procedure TProcessingForm.BitBtn1Click(Sender: TObject);

begin
if Assigned(MyProcessingDialogControl) then

begin
DesiredModalResult := BitBtn1.ModalResult;

MyProcessingDialogControl.Canceled :=

(DesiredModalResult = mrCancel);

end;
end;

Figure 4: The two additions to TProcessingForm’s definition:
assign a procedure to the form’s OnActivate event handler;
assign a procedure to BitBtn1’s OnClick event handler.
There are two other additions that must be made to
TProcessingForm’s definition. One is to assign a procedure to
the form’s OnActivate event handler. The other is to assign a
procedure to BitBtn1’s OnClick event handler. Both implemen-
tations are shown in Figure 4. These routines, along with the
Execute method, work in concert to create the action of the
processing dialog box. When the user calls the Execute method,
the form is created and displayed via the call to ShowModal.

One of the effects of calling ShowModal is that it calls the
form’s OnActivate event handler, which, in this case, is
FormActivate. The first thing FormActivate does is call the
OnStartProcessing event handler. After OnStartProcessing has
returned, FormActivate changes the BitBtn to an OK button.
It then sets the Enabled property of TTimer1 to True.

Timing Is Everything
So what are the timer control and the DesiredModalResult field
used for? The answer lies in the VCL source. If you can, look
at the file FORMS.PAS and search for the ShowModal method
for a TForm. Forms have a property called ModalResult which
is used to terminate a modal form. Setting ModalResult to any
non-zero value ends the form’s modal state. The value assigned
to ModalResult becomes the return value of the ShowModal
function call which displayed the modal form.

By default, ModalResult is set to zero when a form is dis-
played using ShowModal. The problem is that this value is set
to zero after the call to the OnActivate event handler. So set-
ting the value of ModalResult during the process loop (which
is called during OnActivate) doesn’t work.

Assigning a value to DesiredModalResult helps solve this
problem. If the user presses the button on the processing
form, DesiredModalResult is assigned the value intended for
the form’s ModalResult property. Because we can’t set the
value of ModalResult during our process, we need a way of
8 March 1997 Delphi Informant
transferring the value of DesiredModalResult to ModalResult
after the process is complete. We can accomplish this by
enabling the timer after we return from our processing
loop. Then the OnTimer event handler transfers the value
to ModalResult, which forces the form’s modal state to end:

procedure TProcessingForm.Timer1Timer(Sender: TObject);

begin
if Assigned(MyProcessingDialogControl) then

DesiredModalResult := BitBtn1.ModalResult;

ModalResult := DesiredModalResult;

end;

Compile and Install
Before compiling the new component, verify that your code
matches PRCDLG.PAS as shown in Listing One. Remember
to add the following registration procedure to the unit before
trying to install the component:

procedure Register;

begin
RegisterComponents('Dialogs',[TProcessingDialog]);

end;

Install the component on your palette. TProcessingDialog
should appear on the Dialogs page of your palette.

Sample Program
After installing the component, create a new project. On the
default form add a TButton and a TProcessingDialog. Double-
click on the button and define the following method:

procedure TForm1.Button1Click(Sender: TObject);

begin
if ProcessingDialog1.Execute then

ShowMessage('Process complete.')

else
ShowMessage('Process CANCELED!');

end;

Now define a test process. Place a ProcessingDialog control
on the form, and specify the following code for its
OnStartProcess event handler:

procedure TForm1.ProcessingDialog1StartProcessing;

var
i : Integer;

begin
i := 1;

while (i < 1000) and not ProcessingDialog1.Canceled do
begin

Inc(i);

Application.ProcessMessages;

ProcessingDialog1.StatusMessage := 'Please wait...';

ProcessingDialog1.Progress := (i*100) div 1000;

end;
end;

Let’s examine the process in more detail. Notice that one
of the tests for the loop is on the value of
ProcessingDialog1.Canceled. This test will allow your
process to stop prematurely. Canceled becomes True when
the user presses the button on the form or hits E. If
your loop is more complicated than the one shown here,
you may want to check Canceled in several places to be
more responsive to the user.

On the Cover
A key part of the loop is the call to Application.ProcessMessages.
This call is crucial for the process to work correctly — it
allows Windows to handle messages in its message queue.
This means that if the user moves the mouse over the dialog
box and presses Cancel, the program will respond.

Calling ProcessMessages is necessary, but be careful! The
performance of your loop can be adversely affected by call-
ing it too often. You must judge how often you want to
make the call. Depending on the process, you may only
want to relinquish control to Windows every fifth or sixth
time through the loop. However, if one iteration of the
loop takes a relatively long time, you may want to call
ProcessMessages on every iteration.

Run several tests on your process to see how often you
should call ProcessMessages. The interval should be long
enough to allow your process to complete in a reasonable
amount of time. However, it must be short enough so the
user has adequate opportunity to cancel the process. It’s
frustrating to a user to press Cancel and wait a minute or
so before the request is acknowledged.

Modifying the OnStartProcessing event handler for your
application should be simple if you use a looping structure
for your process. Remember to follow the same basic pat-
tern for the processing loop:

procedure TForm1.ProcessingDialog1StartProcessing;

begin
while { Your condition } and

not ProcessingDialog1.Canceled do begin
{ Your application's process here }

Application.ProcessMessages;

ProcessingDialog1.StatusMessage := 'some status';

ProcessingDialog1.Progress := { Some percentage };
end;

end;

After you’ve assigned an event handler, call the Execute
method of the control. The result will be True if the process
completed, and False if the user pressed Cancel.

Not So Fast!
One characteristic of ProcessingDialog is that upon comple-
tion of the process, the form disappears and the program
continues. However, this behavior can be modified to keep
the form on the screen after the process finishes, as well as
present the user with an OK button to acknowledge the end
of the process. To do this, add a property to
TProcessingDialog called AutomaticEnd:

private
FAutomaticEnd : Boolean;

published
property AutomaticEnd: Boolean read FAutomaticEnd

write FAutomaticEnd;
9 March 1997 Delphi Informant
Then change the if statement in the Timer1Timer event
handler as follows:

if Assigned(MyProcessingDialogControl) then
if MyProcessingDialogControl.AutomaticEnd then

DesiredModalResult := BitBtn1.ModalResult;

The value of AutomaticEnd determines if ProcessingForm
remains on the screen after the process is finished. If
AutomaticEnd is True when the process completes, the form
disappears and the program continues. If False, the BitBtn will
change from Cancel to OK and wait for the user’s response.

Take It from Here
This implementation of a process dialog box can be modified
considerably to accommodate a variety of needs. You may
want to change the TLabel to a TMemo to display more
information during your process. If you are using Delphi 2,
you may want to use a Windows 95-style progress bar instead
of a TGauge. You can even configure your dialog box to look
similar to the compiler progress dialog box for Delphi, which
has many separate labels to show the state of different values.

When using this control and assigning an OnStartProcess
event handler, remember three things:

Check the Canceled property value often during your loop.
Call Application.ProcessMessages during the process often
enough to appear responsive to your user.
Display progress reports quickly. Choose controls for the
form that don’t take a long time to draw or update.

Conclusion
Creating a consistent user interface is a fundamental require-
ment of any application. When presenting the user with delays
in processing, it is important to present them with the same
fundamental information and options every time. At a mini-
mum, your program should exhibit text describing the process
status, an indication of percentage complete, and a means for
canceling the process. By using the ProcessingDialog compo-
nent presented here, you can create a consistent way of commu-
nicating process status. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\MAR\DI9703BO.

Brad Olson is Vice President of Systems Design for Olson Research Associates, Inc.
in Columbia, MD. His company has been developing its Financial Planning Model
for Commercial Banks, using Borland products since 1986. He is currently using
Delphi 2 for all new application development. You can reach Brad at (410) 290-
6999 or by e-mail at 76646.2306@compuserve.com.

On the Cover
Begin Listing One — The prcdlg Unit
unit prcdlg;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, ExtCtrls, StdCtrls, Buttons, Gauges;

type
TProcessingDialog = class;
TProcessingForm = class(TForm)

BitBtn1: TBitBtn;

Gauge1: TGauge;

Label1: TLabel;

Timer1: TTimer;

procedure FormCreate(Sender: TObject);

procedure FormActivate(Sender: TObject);

procedure BitBtn1Click(Sender: TObject);

procedure Timer1Timer(Sender: TObject);

public
MyProcessingDialogControl : TProcessingDialog;

DesiredModalResult : TModalResult;

end;

TStartProcessingProcedure = procedure of object;
TProcessingDialog = class(TComponent)
private

FAutomaticEnd : Boolean;

FCanceled : Boolean;

FFormCaption : string;
FProgress : Integer;

FStatusMessage : string;
FOnStartProcessing : TStartProcessingProcedure;

FProcessingForm : TProcessingForm;

procedure SetFormCaption(ACaption: string);
procedure SetProgress(AProgress: Integer);

procedure SetStatusMessage(AMessage: string);

public
constructor Create(AOwner: TComponent); override;
function Execute: Boolean;

published
property AutomaticEnd: Boolean read FAutomaticEnd

write FAutomaticEnd;

property Canceled: Boolean read FCanceled

write FCanceled;

property FormCaption: string read FFormCaption

write SetFormCaption;

property Progress: Integer read FProgress

write SetProgress;

property StatusMessage: string read FStatusMessage

write SetStatusMessage;

property OnStartProcessing: TStartProcessingProcedure

read FOnStartProcessing write FOnStartProcessing;

end;

procedure Register;

implementation

{$R *.DFM}

constructor TProcessingDialog.Create(AOwner: TComponent);

begin
inherited Create(AOwner);

FAutomaticEnd := True;

FCanceled := False;

FFormCaption := 'Processing';

FProgress := 0;

FStatusMessage := 'Please wait...';

end;

procedure TProcessingDialog.SetFormCaption(

ACaption: string);
begin

FFormCaption := ACaption;

if Assigned(FProcessingForm) then
FProcessingForm.Caption := FormCaption;

end;
10 March 1997 Delphi Informant
procedure TProcessingDialog.SetProgress(AProgress: Integer);

begin
FProgress := AProgress;

if Assigned(FProcessingForm) then
FProcessingForm.Gauge1.Progress := Progress;

end;

procedure TProcessingDialog.SetStatusMessage(AMessage:

string);
begin

FStatusMessage := AMessage;

if Assigned(FProcessingForm) then
FProcessingForm.Label1.Caption := StatusMessage;

end;

function TProcessingDialog.Execute: Boolean;

begin
Result := False;

if Assigned(FOnStartProcessing) then
begin

FProcessingForm:= TProcessingForm.Create(Application);

try
if Assigned(FProcessingForm) then

with FProcessingForm do begin
Caption := FormCaption;

Gauge1.Progress := Progress;

Label1.Caption := StatusMessage;

MyProcessingDialogControl := Self;

end;
Canceled := False;

Result := (FProcessingForm.ShowModal = mrOk);

Canceled := not Result;

finally
FProcessingForm.Free;

FProcessingForm := nil;
end;

end
else

MessageDlg('No OnStartProcessing handler defined.',

mtError, [mbCancel], 0);

end;

procedure TProcessingForm.FormCreate(Sender: TObject);

begin
DesiredModalResult := mrNone;

MyProcessingDialogControl := nil;
end;

procedure TProcessingForm.FormActivate(Sender: TObject);

begin
if Assigned(MyProcessingDialogControl) then

MyProcessingDialogControl.OnStartProcessing;

if (DesiredModalResult = mrNone) then
BitBtn1.Kind := bkOk;

Timer1.Enabled := True;

end;

procedure TProcessingForm.BitBtn1Click(Sender: TObject);

begin
if Assigned(MyProcessingDialogControl) then

begin
DesiredModalResult := BitBtn1.ModalResult;

MyProcessingDialogControl.Canceled :=

(DesiredModalResult = mrCancel);

end;
end;

procedure TProcessingForm.Timer1Timer(Sender: TObject);

begin
if (DesiredModalResult = mrNone) then

if MyProcessingDialogControl.AutomaticEnd then
DesiredModalResult := BitBtn1.ModalResult;

ModalResult := DesiredModalResult;

end;

procedure Register;

begin
RegisterComponents('Dialogs', [TProcessingDialog]);

end;

end.

End Listing One

11 March 1997 Delphi Informant

On the Cover
Delphi / Object Pascal

By Derek Davidson
A s a Delphi trainer, a question I’m often asked is: “How do I use my own
images on the DBNavigator component?” The simple answer, of course,

is that you can’t; Borland doesn’t provide a property that lets you do it. With
Delphi however, there’s always a way — in this case, more than one.

Go Your Own Way
Customizing DBNavigator Component Buttons
Quick and Dirty
The simplest way to use custom images with
a DBNavigator component is to edit the
Delphi database controls resource file,
DBCTRLS.RES, found in \PROGRAM
FILES\BORLAND\DELPHI 2.0\LIB (the
path names used in this article are based on a
default installation of Delphi 2). Use the
Delphi Image Editor (or other resource edi-
tor) to examine DBCTRLS.RES. You’ll see
the default buttons used in the DBNavigator
component. Simply replace the default
bitmaps with your own. Remember to keep
the same image names; Delphi uses these to
load the images. Now, whenever you use a
DBNavigator component, you’ll see your
own images in place of the Delphi defaults.

That’s the easy — and inflexible — answer.
What if you need more flexibility? For
example, what if you need to change these
images at design time? The only realistic
option is to write a custom component and
add an image property.

A Better Way
Unfortunately, when Borland produced the
DBNavigator component, they made it
extremely difficult to add any additional
functionality, especially using the preferred,
OOP style of sub-classing. This means we
must either produce a custom component
from scratch, or rewrite the Borland offering.
In this article, we’ll rewrite some of the
Delphi code to produce our own
DBNavigator. If you have the VCL source,
you’ll likely find the file we’re to modify in
\PROGRAM FILES\BORLAND\DELPHI
2.0\SOURCE\VCL\DBCTRLS.PAS.

Before we proceed, a quick word of caution:
Component writing can damage your Delphi
Component Library. Before working with —
or even installing — components, it’s wise to
make a backup of your current library:
\PROGRAM FILES\BORLAND\DELPHI
2.0\BIN\CMPLIB32.DCL. Should your
library become corrupt, you can recover it by
simply substituting your saved copy.

Let’s start by making a copy of the source
code. Create a directory anywhere on your
system and copy the DBCTRLS.PAS file into
it. Next, fire up Delphi, make sure no other
files are open, then use File | Open to load
the copy of the source code. Select File | Save

As and save the source code as TDM.PAS.
You can, of course, give it any name you like,
but let’s keep “TDM” for now.

One of the first things we’ll do is remove all
the code that isn’t pertinent. This makes refer-
ence simpler, and prevents duplicating code
that appears in the original DBCTRLS.PAS
file. I’ll refer to line numbers as we go through
this stage; in case your source code doesn’t per-
fectly match mine, I’ll also give text-quoted
line references. Refer to the table in Figure 1
and remove all code from (and including) the
start point, up to (but not including) the end

Start Text Start Line End Text End Line

type 19 const 64

{ TDBLookup Control 142 implementation 416

{ TPaintControl 148 { TDBNavigator 1938

{ TDataSourceLink 622 end. 1712

On the Cover

Figure 1: Trim your copy of DBCTRLS.PAS by removing these
lines of code, including the start lines, but not the end lines.
point. If all goes well, the TDM unit will contain only 622 lines
— certainly easier to work with than the original 4406.

Next, we need to change the name of our component. To
do this, select Search | Replace. In the dialog box, search
for TDBNavigator and replace it with TDMNavigator.
Make sure you have the Global radio button selected, then
perform the replacement.

Before our first test, we’ll comment out the “include
resource” directive. Go to line 146, which contains:

{$R DBCTRLS.RES}

and change it to:

//{$R DBCTRLS}

Let’s try to install the component to ensure the work we’ve
done is right. To do this, we need to add a Register procedure
to our code. Register tells Delphi to add a component to its
component library, and which page of the Component palette
the component should appear on. First, we forward-declare
the Register procedure in the interface part of the code. Insert
the following code on line 141 of your source code (just
before the line containing the keyword implementation):

procedure Register;

Next, add the Register procedure at the end of the source code:

procedure Register;

begin
RegisterComponents('TDM',[TDMNavigator]);

end;

This code adds a component called TDMNavigator to the TDM
page of your Component palette. You probably don’t yet have a
TDM page — don’t worry, Delphi will create it automatically.

The Moment of Truth
From the Delphi menu, select Component | Install. Click Add,
then Browse. Select your TDM file (TDM.PAS) and click OK.
Click OK once more, and Delphi will attempt to rebuild the
library. If all has gone well, you’ll see a new tab, titled TDM,
on your Component palette. If you click on the tab, you
should see a single option consisting of a circle, square, and
triangle (the default Delphi component image). Pass the
mouse pointer over this button, and you should see the hint
“DMNavigator”. As a final test, select File | New Form from
the Delphi menu and attempt to add your new component to
12 March 1997 Delphi Informant
the form. If everything has worked, you’ll see a DBNavigator
component on the form, but it’s actually your DMNavigator.
Once you’ve tested this, dispose of the test unit and the form
to which it relates, leaving only your component code.

If anything has failed thus far, your best bet is to start from
scratch. Select Component | Install from the Delphi menu to
display the Install Components dialog box. Highlight the TDM
component in the Installed Units list box, then click Remove.
Delphi will now attempt to rebuild your library, omitting the
TDMNavigator component. If unsuccessful, reinstall the
library you saved earlier and start again.

We’re almost ready to start coding, but first let’s cover how to
implement the image properties.

Nuts and Bolts
It’s important that our component match the look and feel of
the original Delphi component. To that end, let’s examine
how it allows customization by the user, taking the Hints
property as an example.

TDBNavigator features a set of default hints that can be over-
written by a user entering hints into a TStrings editor. The posi-
tioning of these strings is important: The first string is applied as
a hint to the first button in the component, the second string is
applied to the second button in the component, and so on. To
emulate this style, we’ll use a TImageList component. TImageList
is a form of container object in that it holds a series of images in
a manner similar to the way a TStrings component holds a series
of strings. Each image in TImageList is referred to by ordinal
position, so we can use this just as we would user-provided hints.

Having decided on this approach, let’s add a new property to
our component. First, we’re going to make an entry in the
private section of the TDMNavigator class:

FButtonGlyphs: TImageList;

Place it on line 48, between the following lines:

FConfirmDelete: Boolean;

function GetDataSource: TDataSource;

To allow access to the property at design time, we must declare it
as published in the TDMNavigator class declaration. So, in the
published section of the TDMNavigator source code, insert:

property ButtonGlyphs: TImageList read FButtonGlyphs

write SetButtonGlyphs;

Let’s quickly discuss what the published property is doing for
us. First, we declare the property with the name ButtonGlyphs.
This is the name the Delphi developer will see in the Object
Inspector at design time; it’s also the name the developer will
use to refer to the property at run time, if appropriate.

Second, the read section tells us that to obtain the current
value of the ButtonGlyphs property, we must examine
FButtonGlyphs. You’ll recall that FButtonGlyphs was declared

procedure TDMNavigator.SetButtonGlyphs(Value: TImageList);

var
n : Integer; // General looping variable
x : TNavigateBtn; // Local variable button type
ResName : string; // Local copy of resource name

begin
{ Set FButtonGlyphs to passed value }
FButtonGlyphs := Value;

{ Cycle through Navigator Buttons available in current
TDMNavigator component, and set button image to correct
image resource loaded from the DBCTRLS resource file. }

for x := Low(TNavigateBtn) to High(TNavigateBtn) do begin
FmtStr(ResName,'dbn_%s',[BtnTypeName[x]]);

Buttons[x].Glyph.Handle :=

LoadBitmap(HInstance, PChar(ResName));

Buttons[x].NumGlyphs := 2;

end;

{ If ButtonGlyphs property is set, cycle through images
and apply images to buttons in the TDMNavigator. }

if ButtonGlyphs <> nil then
begin

{ Loop through all available Navigator buttons and set
their images according to images in the TImageList
component pointed to by FButtonGlyphs. }

for n := 0 to Lesser(FButtonGlyphs.Count - 1,

Ord(High(TNavigateBtn))) do
begin
FButtonGlyphs.GetBitmap(

n,Buttons[TNavigateBtn(n)].Glyph);

Buttons[TNavigateBtn(n)].NumGlyphs := 1;

end;
end;

end;

Figure 2: The SetButtonGlyphs procedure.

On the Cover
earlier in the private section of the TDMNavigator class decla-
ration. Declaring it as private means that access to it is available
only from within the class. Why didn’t we simply declare
FButtonGlyphs as public and make it available for all to exam-
ine? Because the write section tells us that we’ll use
SetButtonGlyphs to write the value to FButtonGlyphs.

Now let’s write the SetButtonGlyphs procedure (see Figure 2).
This code is heavily commented to guide you. It may raise as
many questions as it answers, but I’ll address those shortly.
For now, simply enter the code as shown. I placed mine just
after the TDMNavigator.Destroy method, but you can, of
course, place it anywhere you wish within the TDM unit’s
implementation section. As with all procedures in Delphi, we
also need to forward-declare it, so add the following line in
the private section of the TDMNavigator class:

procedure SetButtonGlyphs(Value: TImageList);

Remember the earlier question about declaring
FButtonGlyphs as public? Using that style, we couldn’t use a
method to read or write the value and, as the above method
shows, writing a value to a class-instance variable often
means more than just assignment. Your customer will use a
property called ButtonGlyphs and may not know that a lot
of processing is being done in the background. If, in subse-
quent releases of your component, you change the code out-
lined above, your Delphi developer will never know — his
or her code will compile exactly as before.
13 March 1997 Delphi Informant
To make our testing of the component a little easier, and to pre-
vent us from having to recompile the library every time we test
it, we’ll create a new application. Select File | New Application

from the Delphi menu. (Your TDMNavigator source will disap-
pear. If you’re prompted to save it, select Yes.) Choose View |

Project Manager and press the Add Unit button. Select your
TDM.PAS file and click OK. Go to your application source code
file (probably titled Unit1) and add TDM to the unit’s uses clause:

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, TDM;

Add a TDMNavigator component to your form and com-
pile the application. There will be two errors relating to a
missing method named Lesser. Let’s remedy this by adding,
to our component source code, a general function titled
— unsurprisingly — Lesser. It accepts two parameters and
returns a value matching the lower of the two. We use it
to ensure that we don’t attempt to write images to non-
existent buttons in TDMNavigator (thereby creating run-
time exceptions). The code for Lesser is:

function Lesser(NumberA, NumberB : Integer) : Integer;

begin
if NumberA < NumberB then

Result := NumberA

else
Result := NumberB;

end;

Add it to the end of your TDM unit — and don’t forget the
forward declaration:

function Lesser(NumberA, NumberB : Integer) : Integer;

This would normally be added immediately prior to the forward
declaration for the Register procedure, which we covered earlier.

If you recompile now, all should be well. If so, rebuild the
library by selecting Component | Rebuild Library. (Select Yes if
prompted to save any changes to the project.) When com-
plete, examine your application again; you should notice that
TDMNavigator now has a new property titled ButtonGlyphs.

Up and Running — I Think
Well, we haven’t come this far not to test it, so let’s try the
property. Drop a TImageList component onto the form (you’ll
find it on the Win95 page). Then set the ButtonGlyphs proper-
ty for TDMNavigator to TImageList. Not a lot will happen, as
we haven’t added any images to TImageList; let’s do that now.
Double-click the TImageList component and add some images.
You’ll find some useful images in PROGRAM
FILES\BORLAND\DELPHI 2.0\IMAGES\BUTTONS.

When you’ve finished adding images, you’ll notice no change
to the navigator. Remedy this by recycling the selection of the
TImageList component (that is, reselect TImageList in
TDMNavigator’s ButtonGlyphs property). Voilà! We now have
a TDMNavigator component capable of accepting user-
defined images at design time.

Figure 3: TChangeLink notes any changes to TImageList, like the
four images added here ...

Figure 4: ... and
affects the changes
in registered
objects like Form1.

On the Cover

Figure 5: The ImageListChange procedure.

procedure TDMNavigator.ImageListChange(Sender: TObject);

var
n : Integer;

x : TNavigateBtn;

ResName : string;
begin

for x := Low(TNavigateBtn) to High(TNavigateBtn) do
begin

FmtStr(ResName,'dbn_%s',[BtnTypeName[x]]);

Buttons[x].Glyph.Handle :=

LoadBitmap(HInstance, PChar(ResName));

Buttons[x].NumGlyphs := 2;

end;

for n := 0 to Lesser(FButtonGlyphs.Count - 1,

Ord(High(TNavigateBtn))) do begin
Buttons[TNavigateBtn(n)].Glyph := nil;
FButtonGlyphs.GetBitmap(n, Buttons[TNavigateBtn(n)].Glyph);

Buttons[TNavigateBtn(n)].NumGlyphs := 1;

Buttons[TNavigateBtn(n)].Refresh;

end;
end;
We could leave the component as-is, but let’s make it
more professional. Any changes to TImageList ought to be
reflected immediately within TDMNavigator. So how do
we achieve this? Delphi provides a couple of interesting
methods. They are RegisterChanges and UnRegisterChanges,
methods of the TImageList component. They allow any
object to register any changes to TImageList. When
changes are made, it transmits the fact to all registered
objects, which can then act appropriately. Next question:
“How do we do that?” Enter the TChangeLink object.

The TChangeLink Object
The TChangeLink object is used by TImageList to notify
registered objects of changes (see Figures 3 and 4).
TChangeLink itself must contain the name of a procedure
to call when changes are made to the TImageList. In our
case, we’d provide the name of a method within our
TDMNavigator component. So now, when TImageList is
changed, a method in our TDMNavigator is called, within
which we can update our ButtonGlyphs.

We’ll implement this next. (You may find that you need to
re-open your TDM unit to get to the source code. A good
short cut for this is to place the cursor on the word TDM in
your Unit1 uses clause, then right-click and select Open File

At Cursor from the pop-up menu.)

Let’s write the necessary code for the TChangeLink object.
Add an entry in the private section of the TDMNavigator
class code as follows:

FImageChangeLink : TChangeLink;

Next, we need to instantiate the TChangeLink object, so add
the following code to the constructor of TDMNavigator (after
the inherited Create call):

FImageChangeLink := TChangeLink.Create;

FImageChangeLink.OnChange := ImageListChange;
14 March 1997 Delphi Informant
Of course, if we create an object, we must also destroy it.
Add the following code to the destructor of
TDMNavigator (before the inherited Destroy call):

FImageChangeLink.Free;

You’ll notice that in the constructor, we set the
FImageChangeLink.OnChange event to point to a
TDMNavigator method titled ImageListChange, which we’ve
yet to produce. The code we need to add is shown in Figure 5
(you’ll notice some similarities with the SetButtonGlyphs
method we produced earlier). As usual, don’t forget to forward-
declare the method. Place the following code in the private
section of the TDMNavigator component:

procedure ImageListChange(Sender: TObject);

This is an opportune moment to try recompiling. If all is
well, your application should compile without problems.
Now we need only use the RegisterChanges and
UnRegisterChanges methods, in the SetButtonGlyphs method
that we wrote earlier. Expand SetButtonGlyphs to match the
code shown in Figure 6. I’ve attached extra comments to
explain the added code, and highlighted the new portions.

Compile your application to check the code you just added,
then rebuild the library. Test that the ImageList works cor-
rectly. Note that changes aren’t notified to TDMNavigator
until you press the OK button on the ImageList Editor dia-
log box. These should be shown immediately at design
time, without having to recycle the ButtonGlyphs property.

So there we have it: a complete, commercial-quality addi-
tion to our Delphi toolbag that will increase the speed and
ease with which we can produce our code.

One Last Thing
Currently, if you use a TImageList component, set the
ButtonGlyphs property, then delete the TImageList compo-

Figure 6: The expanded SetButtonGlyphs.

procedure TDMNavigator.SetButtonGlyphs(Value: TImageList);

var
n : Integer; // General looping variable
x : TNavigateBtn; // Local variable for button type
ResName : string; // Local copy of resource name

begin
{ Check if ButtonGlyphs property has been set. If so,

sever our interest in changing ImageList encapsulated
in ButtonGlyphs. }

if ButtonGlyphs <> nil then
ButtonGlyphs.UnRegisterChanges(FImageChangeLink);

// Set FButtonGlyphs to passed value.
FButtonGlyphs := Value;

{ Cycle through Navigator Buttons available in current
TDMNavigator component, and set button image to correct
image resource loaded from the DBCTRLS resource file. }

for x := Low(TNavigateBtn) to High(TNavigateBtn) do begin
FmtStr(ResName,'dbn_%s',[BtnTypeName[x]]);

Buttons[x].Glyph.Handle :=

LoadBitmap(HInstance, PChar(ResName));

Buttons[x].NumGlyphs := 2;

end;

{ If the ButtonGlyphs property is set, cycle through
images and apply images to buttons in TDMNavigator. }

if ButtonGlyphs <> nil then
begin

{ Record that we're interested in changes to the
TImageList, by notifying any changes to
FImageChangeLink. }

ButtonGlyphs.RegisterChanges(FImageChangeLink);

{ Loop through all available Navigator buttons and
set their images according to images in TImageList
component pointed to by FButtonGlyphs. }

for n := 0 to Lesser(FButtonGlyphs.Count - 1,

Ord(High(TNavigateBtn))) do
begin
FButtonGlyphs.GetBitmap(

n,Buttons[TNavigateBtn(n)].Glyph);

Buttons[TNavigateBtn(n)].NumGlyphs := 1;

end;
end;

end;

On the Cover

Figure 7: An ounce of pre-
vention avoids this error in
ButtonGlyphs.

Figure 8: The expanded Notification method.

procedure TDMNavigator.Notification(AComponent: TComponent;

Operation: TOperation);

begin
inherited Notification(AComponent, Operation);

if (Operation = opRemove) and
(FDataLink <> nil) and
(AComponent = DataSource) then

DataSource := nil;
{ New code added here to cope with

destruction of TImageList. }

if (Operation = opRemove) and
(AComponent = ButtonGlyphs) then

ButtonGlyphs := nil;
end;
nent, you’ll get an Access
Violation error reported in the
Object Inspector against the
ButtonGlyphs property (see
Figure 7).

Needless to say, this is a situation
we should prevent programmati-
cally, but how do we notify the
TDMNavigator that the
TImageList component has been
deleted? With the
FreeNotification method of the
TComponent class.

The FreeNotification method
accepts a single parameter of
type TComponent. For the sake
of discussion, let’s call this para-
meter AComponent. By calling
15 March 1997 Delphi Informant
the Notification method in the passed component,
FreeNotification ensures that the component passed as the
parameter is notified when the component to which
FreeNotification refers is to be destroyed. In our example, we
could show this with the pseudo-code:

TImageList.FreeNotification(TDMNavigator);

This would call our notification method for the
TDMNavigator component when TImageList will be
destroyed. To employ this functionality, add the following
line of code to the SetButtonGlyphs method:

// Value is the passed TImageList
Value.FreeNotification(Self);

Insert this immediately after the following statement:

ButtonGlyphs.RegisterChanges(FImageChangeLink)

Now, inside our Notification method, we reset our
ButtonGlyphs property. Expand the Notification method by
inserting code to match that shown in Figure 8.
Conclusion
Now, compile your application to prove your code, then
rebuild the library. You now have a useful component you
can easily drop on any form. As a flourish, you might pro-
vide a separate icon for the Visual Component Library. ∆

The TDM.PAS file referenced in this article is available on the
Delphi Informant Works CD located in INFORM\97\MAR\
DI9703DD. Mr Davidson’s TDBNavigateCollate component,
which provides all the functionality described in this article, as well
as offering a collation capability, refresh capability, and incremental
search capability for TQuery-based datasets, is also available from
the Delphi 2 forum on CompuServe (GO BDELPHI32).

Derek Davidson is a part-time technical author and full-time Delphi user who spe-
cializes in client/server applications. He currently works for Micro Key Software in
Kissimmee, FL. Derek can be contacted on CompuServe at 100432,1360, or via
the Internet at 100432.1360@compuserve.com.

16 March 1997 Delphi Informant

On the Cover
Delphi 2

By Alex Sumner
When a Windows version of an application replaces a DOS counterpart,
users must learn new ways of working with it. This is not always wel-

come, particularly if users prefer the old version. One common complaint
concerns the use of the J key. For many years, and on many platforms, it
has been standard for users to press J when they have completed enter-
ing one item of information and wish to move on to the next.

Key Issues
Modifying Standard Keyboard Behavior
Windows has a different standard: F is
used to move to the next item on a form;
J means all items have been completed,
and usually has the same effect as clicking an
OK button. In Delphi, a TButton or TBitBtn
has a property called Default; if this is set to
True, then pressing J when the button’s
form is active will have the same effect as
clicking on that button. Usually, OK is the
default button on a form.

Nearly every Windows user must at some
time have experienced this: a dialog box is
displayed with several items of information
to enter, they fill in the first one, press J
to go to the second, and the dialog box van-
ishes — they have inadvertently activated the
OK button. The most common response to
this complaint is “Using Tab to move from
control to control is the Windows standard;
get used to it.”

While conforming to a common standard is
generally wise, the complaint in this case aris-
es because we have departed from a previous
standard. This article will address alternative
approaches to the problem. We’ll begin by
reviewing some widely-known solutions
(using keyboard event handlers), and demon-
strate what can and cannot be achieved using
these “standard” approaches. We’ll then pre-
sent a more powerful, object-oriented solu-
tion. In doing so, we’ll look in-depth at how
Delphi applications handle keyboard input,
and learn other useful tactics, even for devel-
opers who have no intention of departing
from the standard Windows handling of J.

Standard Approaches
The easiest solution to the previous example
of the disappearing dialog box is to have the
OK button disabled until entry of all required
items of information. Take for example a
modal dialog box with several edit boxes to
be filled. The OK button is not enabled until
all the boxes contain some text, and only
then will J activate OK and hide the dialog
box. While this is an improvement, two
problems remain:
1) This approach is not always applicable.

There may be circumstances when some
items in a dialog box are optional, so OK

must be enabled even when these items
have not been supplied.

2) Even when this approach can be used, it
doesn’t accomplish what the user wants.
Using the example of a dialog box with
several edit boxes to fill, when the user
initially sees the dialog box, the first edit
box already has focus. The user supplies
the required information, and presses
J. The dialog box doesn’t disappear,
but the focus doesn’t move either. The
computer simply beeps, because J has

On the Cover

Figure 1: An OnKeyPress event handler.

procedure TMyForm.KeyPress(Sender: TObject; var Key: Char);

begin
{ If it's an Enter key ... }
if Key = #13 then

begin
{ Move the focus ... }
SelectNext(ActiveControl,True,True);

{ and prevent further processing of the key. }
Key := #0;

end;
end;
returned focus to the first edit box, which cannot accept
it. This can be annoying; the application is not misinter-
preting the key press, it’s rejecting it. The user obviously
wants to move to the next item — and they want to
know why the application can’t do it.

If our application is to respond more intelligently to J, we
must write some code. One obvious location for this code is
in an OnKeyPress event handler. Figure 1 shows an
OnKeyPress event handler that responds to J by moving
the focus to the next control in the tab order, then setting the
Key value to 0, thus achieving what the user wants and pre-
venting further processing of the key. However, if you try
this, you’ll discover it doesn’t work when there is a default
button enabled on the form. It only works in conjunction
with disabling OK, as previously described.

Of course, we could simply not include a default button, but
there is still a drawback to our approach. To be consistent, we
must attach our code to the OnKeyPress event handler of all
our edit boxes, and perhaps of other controls, on all the
forms in our application. This is rather messy and redundant.
Every time we add a new component, we must remember to
attach our code to its OnKeyPress event handler. We might try
to simplify matters by creating our own customized edit box
component, which could have the required focus-moving
behavior built in. Unfortunately, this will commit us to the
potentially open-ended task of modifying VCL components.
Having customized the edit box, we may find we also need a
customized TMaskEdit, or perhaps a customized TComboBox.

To find a more self-contained solution, we must approach the
problem from a different perspective. The words “self con-
tained” provide a clue as to how we may proceed. Our prob-
lems occur in part because moving the focus is not something
that concerns only the control which currently has the focus.
Moving the focus also affects the control which is to receive the
focus, as well as the form on which both controls are placed. To
find a self-contained solution, we must work at the form level.

A Delphi TForm has a property called KeyPreview, which is of
type Boolean and has a default value of False. If KeyPreview is
set to True, the key events (OnKeyDown, OnKeyPress, and
OnKeyUp) go to the form’s event handler before moving to
the event handler of the control with focus. By setting
KeyPreview to True and attaching our event handler to the
form’s OnKeyPress event handler, we can achieve the same
effect, but with much greater economy of effort. Now we
must only remember to attach code to the OnKeyPress event
handler each time we add a new form, rather than each time
we add a component to an existing form. This is certainly an
improvement, but we still have a problem with the default
OK button. If you try this, you’ll find that no matter what
code you attach to a form’s OnKeyPress (or OnKeyDown or
OnKeyUp) event handler, you cannot prevent an enabled
default button from being activated by J.
17 March 1997 Delphi Informant
We could work around this by being careful when we enable or
disable default buttons. Alternatively, we could avoid the prob-
lem altogether by not setting any buttons as the default button
on a form. After all, if we don’t want them to behave like default
buttons, there is little reason to make them default buttons.

Taking Stock
Now we’re in a position to make our application respond in
any one of three ways to J:
1) We can have standard Windows key handling, with

default buttons.
2) We can keep the default buttons, but change our forms

by setting KeyPreview to True and supplying a suitable
event handler for the OnKeyPress event handler. If we are
careful about when we enable the default buttons, we can
then simulate a non-Windows user interface in many cir-
cumstances, while still conforming to the Windows stan-
dard (i.e. J will activate an enabled OK button).

3) We can depart from the Windows standard altogether by
removing the default buttons. Of course, we’ll want to
retain the OK buttons, but we can set their Default proper-
ties to False. This way our application will behave in a
manner familiar to DOS users: Pressing J will only acti-
vate an OK button if the focus is already on that button.

But Wait, There’s More
We could stop at this point. If we’re confident we know what
our users require, and that those requirements will not
change, we have a solution. Unfortunately, this solution
introduces dependencies. The required behavior only emerges
when different properties of both our forms and the buttons
on them are set in a suitable combination. The weakness of
this design becomes apparent when we try to make changes,
as is often the case with design problems. Suppose we’ve
implemented the third option of emulating a DOS user
interface, but a new customer requests standard Windows key
handling. In this case, we must go through all our forms,
removing the OnKeyPress event handlers and setting the OK

buttons as default buttons again. Worse still, suppose we have
a multi-user application, and each user wants the capability
to specify which key-handling standard they prefer, and have
the application thereafter respect their wishes. We must either
add event handlers, or identify default buttons at run time, as
each form is loaded.

On the Cover
Our original problem was simple and self-contained. We’d
like to find a solution requiring modifications to be made in
only one location. If this is what we want, or even if we are
curious as to why the OnKeyPress approach cannot do it, we
must look in more detail at the way our application receives
and responds to keyboard input.

Keyboard Handling in Delphi 2
When our example dialog box is displayed with the focus on
its first edit box and the user presses a key, a complicated
chain of events begins. How the application responds depends
on several factors, such as which key was pressed, and whether
there is an enabled default button on the form. If the key is a
character key, that character will be appended to the text in
the edit box. If Fii is pressed, the focus will be moved. If J
is pressed, then either the default button will be activated, or
if the default button is not enabled, a warning beep will
sound. To successfully alter this behavior, we must make our
changes at the appropriate point in the chain of events. If we
take action too late, we’ll find we must make changes in many
locations to consistently catch all occurrences.

On the other hand, if we take action too soon (e.g. in a handler
for the application’s OnMessage event), we may prevent some-
thing else from working because we’ve intercepted J before
any of the normal processing for it has occurred. Take for exam-
ple grid controls, which allow in-place editing of their data.
They can require J to initiate editing a value. If we’ve already
intercepted J for our own purposes, this will no longer work.

To find an appropriate location to make our changes, we should
first find the point at which Fii normally causes the focus to
move. To do this, follow the process from the moment the user
presses a key. (Note: The following description is accurate for
Delphi 2, and the solution has only been tested under Delphi 2.)

The first action when the user presses a key is that Windows cre-
ates a WM_KEYDOWN message for the window with focus (in
our example, the edit box), and posts it to our application’s mes-
sage queue. This message contains the details of which key was
pressed. In a Delphi application, this role is performed by the
Application object (which is found in the Delphi VCL source
file FORMS.PAS). The Application object also sits in a loop tak-
ing messages from the queue.

However, the Application object doesn’t always simply dispatch
these messages. Under some circumstances it will process a mes-
sage itself, or even send an alternative message to the window. A
WM_KEYDOWN message is one such circumstance. Before
deciding whether to dispatch the message to the WinControl for
which it is intended, the Application object first sends a corre-
sponding CN_KEYDOWN message to the WinControl.
CN_KEYDOWN is a Delphi-defined message declared in the
source file CONTROLS.PAS. (In the remainder of this article,
we will refer to several other Delphi-defined messages. Each will
have a prefix of CN_ or CM_, as opposed to the WM_
prefix of standard Windows messages.) The CN_KEYDOWN
18 March 1997 Delphi Informant
message contains the same information about which key was
pressed as did the original WM_KEYDOWN message.

The CN_KEYDOWN message is then processed by the
Delphi message handling system, and ultimately arrives at the
CNKeyDown message handler that all WinControls inherit
from TWinControl (which is also found in the source file
CONTROLS.PAS). CNKeyDown processes the message in
five steps:
1) CNKeyDown checks if the key is a menu key for a

pop-up menu, the WinControl’s parent form’s menu, or
the main form’s menu (the latter involves sending the
Application object a CM_APPKEYDOWN message). If
any of these apply, the key is processed and the
CNKeyDown message handler exits with the message
result field set to 1. Otherwise, proceed to step 2.

2) The WinControl’s CNKeyDown message handler sends
itself a CM_CHILDKEY message by calling its Perform
method. (Perform is a static method all Delphi controls
inherit from TControl. It is used to send a message
directly to a control without going via Windows. A
control’s Perform method takes three parameters, with
which it constructs a message; it then sends this message
to itself by directly calling its own WndProc method.)
The CM_CHILDKEY message then goes through the
Delphi message handling system to arrive at the
WinControl’s CMChildKey message handler. This passes
the message on to its parent by directly calling its par-
ent’s WndProc method, unless it has no parent, in which
case it returns immediately without performing any pro-
cessing of the message. The result navigates through the
chain of parents until it runs out of parents, but on the
way it may find one to process the key by overriding the
CMChildKey message handler. The only VCL component
that processes keys this way is the TDBControlGrid,
which processes F, 2, E, and Return, and sets
the CM_CHILDKEY message result field to 1 to indicate
it has done so. In any case, it eventually arrives at a
WinControl that has no parent, then returns down the
chain of CMChildKey message handlers to the original
CNKeyDown handler. This inspects the result field of the
CM_CHILDKEY message, which now has the value 1 if
the key has been processed, and 0 otherwise. If the key
has been processed, the CNKeyDown handler sets its
message result field to 1 and exits. The third, fourth, and
fifth steps occur only if one of the following keys is
pressed: F, E, an arrow key, Return, Execute, or
Cancel. If the key is not one of these and has not been
processed in steps 1 or 2, the CNKeyDown handler exits
with its result field left as 0.

3) The WinControl’s CNKeyDown handler checks if the
WinControl itself wants the key by sending itself a
CM_WANTSPECIALKEY message. Again, it does this by
calling its own Perform method. Only two VCL compo-
nents indicate they want keys in response to this message.
The first is a TCustomGrid with goEditing in its Options
set, which requests J. The other is a TMaskEdit that
has had its contents modified, which will request E. In

On the Cover
any case, the key is not processed at this stage; a compo-
nent that wants the key merely indicates this by setting
the CM_WANTSPECIALKEY message result field to 1;
all other WinControls leave the result field as 0. If the key
is desired, the CNKeyDown handler prevents any other
processing of the key at this stage by exiting with its mes-
sage result field left at 0. Otherwise, proceed to step 4.

4) The WinControl’s CNKeyDown handler further verifies if
the TWinControl itself wants the key by sending itself a
WM_GETDLGCODE message. Again, it does so by call-
ing its own Perform method. WM_GETDLGCODE is a
standard Windows message, and unless a particular
WinControl supplies or inherits a handler for it, it will
eventually be processed by the default window procedure
for the WinControl’s window class. Some VCL compo-
nents do supply handlers for the WM_GETDLGCODE
message (e.g. a TDBNavigator will request arrow keys,
and a TCustomMemo will request F if its WantTabs
property is True). Wherever the WM_GETDLGCODE
message is handled, its result field indicates which types
of keys are required. As in step 3, no processing of the
key is performed at this stage; the WinControl merely
indicates which types of key it wants to receive. The
CNKeyDown handler inspects the WM_GETDLGCODE
result field to see whether the keys required by the
WinControl correspond to the key it has. If the key is
required, the CNKeyDown handler prevents any other
processing of the key at this stage by exiting with its mes-
sage result field left at 0. Otherwise, proceed to step 5.

5) The WinControl’s CNKeyDown event handler now
sends its parent a CM_DIALOGKEY message by calling
its parent’s Perform method. At this stage F may
cause the focus to be moved. If the parent is a TForm,
its CMDialogKey message handler will respond to F
or an arrow key by moving the focus, and indicate it
has done so by setting the CM_DIALOGKEY message
result field to 1. If the key is not F or an arrow key,
the TForm will pass the message to the CMDialogKey
handler, which it inherits from TWinControl. This
will broadcast the message, which means it will send
the message to each control on the form (by directly
calling their WndProc methods), verifying each to see if
the key has been processed. It is at this stage that a
default button on the form will respond to J, which
it will do by calling its own Click method. If any of the
controls do process the key, they indicate this by setting
the CM_DIALOGKEY result field to 1 and the broad-
cast stops. Finally, the Perform method of the
WinControl’s parent will return with a result of 1 if the
key has been processed, and 0 otherwise. The
WinControl’s CNKeyDown event handler will then exit,
also with a message of 1 if the key has been processed,
and 0 otherwise.

Now, back in the Application object, sending the
CN_KEYDOWN message returns a result of 1 if the key
has been processed, and 0 otherwise. If the key has been
19 March 1997 Delphi Informant
processed, the Application object stops all further process-
ing of the original WM_KEYDOWN message. If the key
has not been processed, the Application object translates
and dispatches the original WM_KEYDOWN. Now we can
see why using OnKeyPress or OnKeyDown event handlers
could never prevent a default button from responding to
J. We have passed the point at which a default button
responds to J, but we have not seen any OnKeyDown or
OnKeyPress events along the way. These occur only later,
and only if the Application object translates and dispatch-
es the WM_KEYDOWN message — which it won’t do if a
default button has already processed J. We could follow
the process further, but we have probably seen enough for
now. Certainly we now know enough to see where to put
our code to modify the application’s response to J.

EMFForm
Looking back at the Delphi VCL’s processing of a
CN_KEYDOWN message, we see that steps 1 through 4 are
a series of checks that give various components an opportu-
nity to process the key, or at least to indicate that they wish
to do so. It is only at step 5, if none of these checks has
found a taker for the key, that the WinControl’s parent
form will respond to F by moving the focus. It is also in
step 5 that an enabled default button will respond to J.
Therefore, we should place our own modifications to this
behavior as close to step 5 as possible. To act before then
may stop some other component from working properly by
denying it access to J. To act after step 5 will be difficult
because we may have to make changes in many different
places, and we will be acting after any enabled default but-
ton has already received J.

Because focus shifts in response to F are performed in the
parent form’s CMDialogKey message handler, this is the place
to intervene. By overriding the CMDialogKey handler, we
can substitute our own responses to J, and by calling the
inherited handler we can also carry out standard processing
in the majority of cases.

Listing Two (on page 21) shows the code for a descendant of
TForm called TEMFForm (EMF stands for Enter Moves
Focus). EMFForm differs from a standard TForm in only two
respects. First, it supplies a new message handler for the
CM_DIALOGKEY message. Second, it introduces two new
Boolean properties: StandardKeyHandling and
DOSEmulation. EMFForm’s key-handling behavior can be
modified by setting one of these two properties to True. The
values of these properties are stored in two private fields,
FStandardKeyHandling and FDOSEmulation. Both properties
are public and have a default value of False.

Before we discuss EMFForm’s key-handling behavior in
detail, we should note that it also supplies a new construc-
tor: its Create method. This constructor does nothing except
call the constructor inherited from TForm. When an object
is created in Delphi, its fields are all initialized to 0, which
means False in the case of a field of type Boolean. Because

On the Cover

Figure 3: A multi-user version of the TEMFForm constructor.

constructor TEMFForm.Create(AOwner: TComponent);

begin
inherited Create(AOwner);

if User.WantsDOSEmulation then
DOSEmulation := True

else if User.WantsStandardKeyHandling then
StandardKeyHandling := True;

end;
the fields FStandardKeyHandling and FDOSEmulation will
both be set to False, and because these are the default values
we want, there is no need to take any special action to ini-
tialize them in the EMFForm constructor. In fact,
EMFForm’s new constructor is completely unnecessary as it
stands; it does nothing the constructor inherited from
TForm doesn’t do. However, we’ll be making some changes
to EMFForm’s constructor in the next section.

The real substance of EMFForm is in the new CMDialogKey
message handler which it supplies. In the default configura-
tion, with both StandardKeyHandling and DOSEmulation
turned off, EMFForm’s CMDialogKey handler first calls the
handler inherited from TForm. If the key hasn’t been
processed after that, and if it is J, then the focus is moved
(and the message result field is set to 1 to indicate that the key
has been processed). In this way, J will generally move the
focus, unless there is an enabled default button on the form. If
there is an enabled default button, then it will process J
during the inherited CM_DIALOGKEY handling, and no
focus move will occur. If we use modal dialog boxes with the
OK button initially disabled, and only enable it when the last
edit box has been filled, we can produce behavior on data
entry forms that is unfamiliar to DOS users. However,
Windows users shouldn’t notice any significant change; J
will still “click” an enabled default button, so they can still use
F to navigate, and J to close a modal dialog box. The
disadvantage of this approach is that pressing J on an edit
box doesn’t always have the same effect; the effect depends on
whether the OK button has been enabled.

If DOSEmulation is set to True, EMFForm responds
to J by moving the focus and setting the
CM_DIALOGKEY message result field to 1. The only
circumstance under which EMFForm will not do this is if
the control which currently has the focus is a button.
Presumably if a user presses J on a button, they mean
to click it. The inherited CM_DIALOGKEY message han-
dler is called only if the key is not J, or if the control
which has the focus is a button. Note that this means a
default button on the form will not be clicked by pressing
J unless it already has the focus. This might not be
what a Windows user expects, but it is close to the behav-
ior of many DOS applications.

If StandardKeyHandling is set to True, EMFForm’s
CMDialogKey message handler does nothing except call the
handler inherited from TForm. This means it will perform
standard Windows key processing in exactly the same way as
TForm. Because StandardKeyHandling and DOSEmulation are
mutually exclusive options, setting one property to True will
automatically set the other to False. However, they can both
be False (the default configuration).

Using EMFForm
If we place EMFForm in the Delphi repository and use it
— or forms descended from it — throughout our applica-
20 March 1997 Delphi Informant
tion, then we’ll have an application that has three modes of
keyboard handling built into it. It would be nice if we
could make DOSEmulation and StandardKeyHandling pub-
lished properties, rather than public ones. Then we could
set EMFForm’s behavior at design time. Unfortunately,
Delphi doesn’t support the addition of published properties
to a descendant of TForm, so we can’t do that. However,
there are other possibilities.

The simplest thing we can do is make a minor alteration
to EMFForm’s constructor. Figure 2 contains the code for
an alternative constructor that makes DOSEmulation the
default mode for the form. It would, of course, be possible
to make StandardKeyHandling the default in the same way.
We can now have a complex application, or suite of appli-
cations, which supports from a common code base multi-
ple customers with differing key-handling requirements.
The only differences between the applications the various
customers have will be in one line of code in the construc-
tor of our base form. This will certainly make for simpler
maintenance than would the approach we discussed earli-
er, where we modified the form’s behavior by means of
OnKeyPress event handlers.

We are now finally able to tackle the multi-user scenario
we described earlier. Suppose that each user is allowed to
specify which of the key-handling modes they prefer. A
user’s preference may be looked up when they log in to
our application, and stored in some manner that makes it
accessible to EMFForm. This may simply be done by
means of a globally accessible variable, or perhaps the
application will create a User object which maintains other
information about the user besides their key-handling
preference. Possibly security information will also be main-
tained by the User object; not all users may be permitted
access to all parts of the application. Exactly how the
information is made available to EMFForm is immaterial
for our purposes. As an example, Figure 3 contains the
code for a constructor which verifies a user’s key-handling
preferences by referring to a User object, and configures
EMFForm to suit the current user.

Figure 2: An alternative constructor for TEMFForm.

constructor TEMFForm.Create(AOwner: TComponent);

begin
inherited Create(AOwner);

DOSEmulation := True;

end;

On the Cover
Conclusion
After some searching we have found the ideal place in the
VCL to modify the default behavior of J. In the process,
we have seen how the VCL handles keyboard input — knowl-
edge that may be useful in many other circumstances. If, for
example, we want to write a component that needs to ensure
that it receives F, arrow keys, or E, we need only look at
steps 3 and 4 in the processing of the CN_KEYDOWN mes-
sage handler. Or if we want to write a container component
that needs to know whenever a component that it contains
has been sent a particular key, the answer lies in step 2.

By placing our changes in the most appropriate place we
gain two advantages. The first advantage is safety. We
know we are intervening only after all the normal checks
Delphi performs, so we won’t prevent some other compo-
nent from receiving J. The second advantage is ease of
maintenance; we do not need to duplicate our efforts in
multiple locations. In a few lines of code, we have imple-
mented a form which supports three modes of keyboard
handling, and can dynamically switch between these
modes. This should be enough to please most users. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\MAR\DI9703AS.

Alex Sumner is an independent software developer specializing in Delphi develop-
ment. He can be contacted via CompuServe at 100405,3112.
Begin Listing Two — The TEMFForm Class
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

StdCtrls, Forms, Dialogs;

type
TEMFForm = class(TForm)
private

FDOSEmulation: Boolean;

FStandardKeyHandling: Boolean;

procedure CMDialogKey(var Message: TCMDialogKey);
message CM_DIALOGKEY;

protected
procedure SetDOSEmulation(DoDOSEmulation: Boolean);

virtual;
procedure SetStandardKeyHandling(

DoStandardKeyHandling: Boolean); virtual;
public

constructor Create(AOwner: TComponent); override;
property DOSEmulation: Boolean

read FDOSEmulation write SetDOSEmulation;

property StandardKeyHandling: Boolean

read FStandardKeyHandling write
SetStandardKeyHandling;

end;

implementation

{$R *.DFM}

constructor TEMFForm.Create(AOwner: TComponent);

begin
inherited Create(AOwner);

end;
21 March 1997 Delphi Informant
procedure TEMFForm.CMDialogKey(var Message: TCMDialogKey);
var

IsEnterKey: Boolean;

begin

with Message do begin
{ Check if it's an Enter key, don’t count Alt Enter

or Ctrl Enter. }
IsEnterKey := (Charcode = VK_RETURN)and

(GetKeyState(VK_MENU) >= 0) and
(GetKeyState(VK_CONTROL) >= 0);

if not (FStandardKeyHandling or FDOSEmulation) then
begin

{ Default behavior: First see if inherited handler
processes it. }

inherited;
{ If it's an Enter key and it hasn't been used for

anything else. }
if IsEnterKey and (Result = 0) then

begin
{ Move the focus to the next control, or

previous control for Shift Enter. }
SelectNext(ActiveControl,

GetKeyState(VK_SHIFT) >= 0, True);

Result := 1;

end;
end

else if FDOSEmulation then
begin

{ DOS emulation: Enter will not function as a
Windows user expects. }

if IsEnterKey and
not (ActiveControl is TButton) then

begin
{ Move the focus to the next control, or

previous control for Shift Enter. }
SelectNext(ActiveControl,

GetKeyState(VK_SHIFT) >= 0, True);

Result := 1;

end;
if Result = 0 then

{ If not an Enter key, or we're on a button,
call the inherited handler. }

inherited;
end

else
{ Standard Windows key handling; same as Tform. }
inherited;

end; { with message do }

end;

procedure TEMFForm.SetDOSEmulation(DoDOSEmulation: Boolean);

begin
FDOSEmulation := DoDOSEmulation;

{ Can't have DOS Emulation and Standard Key Handling. }
if FDOSEmulation then

FStandardKeyHandling := False;

end;

procedure TEMFForm.SetStandardKeyHandling(

DoStandardKeyHandling: Boolean);

begin
FStandardKeyHandling := DoStandardKeyHandling;

{ Can't have Standard Key Handling and DOS Emulation. }
if FStandardKeyHandling then

FDOSEmulation := False;

end;

end.

End Listing Two

22 March 1997 Delphi Informant

Informant Spotlight
Delphi / CGI / HTML

By Ken Jenks

Figure 1: The table st
A lthough it’s fairly easy to create HTML files, it’s hard to build a good
Web site. It’s even harder when the site grows and the number of files

increases. Keeping your site up-to-date as you add and delete files can be
a real chore. Luckily, Delphi can make this job easier.

Database-Driven Web Sites
Managing Web Sites with Delphi
ru
A Web site consists of multiple files on a
Web server, including HTML files, video
clips, sound files, Java code, CGI programs,
data files, and .GIF and .JPG images. There’s
an image file for every button, banner, hori-
zontal rule, and picture on the site. To keep
track of these files, you can build a database,
then create an interface from the database to
the Web server. Creating interfaces to data-
bases is a job Delphi does particularly well.

An Online Art Gallery
As an example, we’ll build an art gallery.
Each object d’art will have a title, an artist, a
small “thumbnail” .GIF image, a large full-
color .JPG image, a description, and a price.
In our Web art gallery, we’ll provide four
indices for locating the artwork: artist, title,
cture.
thumbnail, and price. We’ll use these to pro-
duce four “views” of our database. (Note: In
this article, the term view doesn’t refer to a
SQL view, although the result is similar.)

First, use the Database Desktop to create a
simple Paradox table, artwork.db, with the
five fields shown in Figure 1. Save it in a new
directory, C:\dbweb.

Second, populate your database with infor-
mation about the artwork in your gallery (see
Figure 2).

Generating Views
From this database, we’ll generate four views
and save them as HTML files. Then we’ll
discuss how to send these HTML files from
your PC to the Web server. To generate those
four views, we’ll generate four reports from
our database, including the appropriate
HTML tags, saving the reports on the PC.

In this example, two fields, Dir and
Filename, refer to external files also stored on
your PC. The .GIF thumbnail and the full-
color, full-sized .JPG images have the same
base filename (e.g. “night”) but different
extensions (.GIF and .JPG). Those image
files are stored in the artist’s directory on the
PC (e.g. C:\dbweb\vangogh\). The descrip-
tion of the artwork is also kept in an external
file with the same base name, but using an
.HTM extension. The directory structure is
shown in Figure 3.

Figure 3: The directory structure.

Figure 2: Table contents.

Informant Spotlight

C:\dbweb\ Home directory for the project. Contains
source code, .EXE, and database. Target
directory for generating HTML files.

C:\dbweb\rembrand\ Contains six files for artist “Rembrandt”:
ruts.gif Thumbnail image of ruts.jpg
ruts.htm Description of “Nicolaes Ruts”
ruts.jpg Full-size, full-color image
self.gif Thumbnail image of self.jpg
self.htm Description of “Self Portrait”
self.jpg Full-size, full-color image

C:\dbweb\picasso\ Contains three files for artist “Picasso, Pablo”:
head.gif Thumbnail image of head.jpg
head.htm Description of “The Head”
head.jpg Full-size, full-color image

C:\dbweb\vangogh\ Contains three files for artist “Van Gogh,
Vinnie”:

night.gif Thumbnail image of night.jpg
night.htm Description of “Starry Night”
night.jpg Full-size, full-color image

Figure 4: The artwork data in the DBGrid.
Now we’ll build the Delphi application to automatically gen-
erate Web pages from the table, images, and description files.

Building the Application
Use Delphi to create a new SDI application with one form.
Save the new project as C:\dbweb\dbweb.dpr and save the
Unit as C:\dbweb\dbwebu.pas. Onto the form, drop a Table
component (named tblArtwork in our sample), a DataSource
component (named dsArtwork), a Query (named qArtwork), a
DBGrid, and a DBNavigator. Link the DataSource to the
Table, link the DBGrid and the DBNavigator to the
DataSource, and link all of these with your database, setting
the Table properties’ DatabaseName to c:\dbweb, TableName
to ARTWORK.DB, and Active to True. Your data should appear
in the DBGrid (see Figure 4).

Now add a button to the form. Change the Name of the but-
ton to btnGenerate and the Caption to &Generate. Double-
click on the Generate button and add the code in Listing
Three (beginning on page 24) to generate Web pages. The
code will create five HTML files, one for each of the four
views, plus an index file. We’ll define some local procedures
to generate HTML files and call the procedures from
TDBWebForm.btnGenerateClick.

Notice how we create text files to contain our HTML code,
then use WriteLn to generate our reports. There are many
other ways of generating reports from databases in Delphi,
but this is the simplest for short reports.

You can run this program to generate Web pages from a
database. Use your Web browser to open the local file,
23 March 1997 Delphi Informant
C:\dbweb\index.htm, then look at the other Web pages —
they’re simply pre-generated, static views of the database.

Next, you must move the pages to the Web server.
Depending on your Web server, this could be as simple as
writing the HTML files to the Web server’s document
directory, or it could require you to FTP the files to the
Web server. (In this case, you could use an FTP component
in Delphi to automatically transfer the files to the Web
server.) Note that the .GIF and .JPG images are stored in
different directories than the HTML files. When you move
the HTML files from your PC to the Web server, you must
create these directories and copy the images as well.

A Corporate Example
Mind’s Eye Fiction sells short stories on the Web. At
Mind’s Eye Fiction, Delphi is used to generate static
indices (similar to those previously described) from data-
bases of stories, allowing users to view the story database by
author, title, genre, and illustration. Author information
such as name, address, phone number, social security num-
ber, e-mail, Web site, etc. is kept in a separate database,
linked to each story by author name. Title information
includes number of words in the story, and price. Delphi
generates the Web pages and canned e-mail notes to send
to authors at various stages of review and publication.
Delphi also sets up the requests to the electronic commerce
systems used at Mind’s Eye Fiction.

Conclusion
This little application is a starting point that you can
build on, using your own database. As previously noted, it
can be augmented with an FTP component to automati-
cally transfer your files and images to your Web server or
delete them from the server when they are no longer need-
ed. You can also loop through a table to generate a list of
items in radio buttons for HTML forms. After you start
using Delphi’s database power to build Web pages, your
Web site management will be much simpler. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\MAR\DI9703KJ.

Ken Jenks is owner and Editor-in-Chief of Mind’s Eye Fiction (http://tale.com),
a Delphi-driven, Web-based publishing company specializing in short stories.
He has used computers for 21 years, the Internet for 10 years, and Borland
Pascal since version 2.0 for CP/M. He can be reached by e-mail at
MindsEye@tale.com.

Informant Spotlight
Begin Listing Three — dbwebu.pas
procedure TDBWebForm.btnGenerateClick(Sender: TObject);

{ To assist in creating Web pages from text files, we'll
define a local procedure to copy a file from disk to an
open text file. Notice this procedure is not a method of
TDBWebForm, but local to the btnGenerateClick method. }

procedure CopyAFile(var F : TextFile; FN : string);
var

Temp : TextFile;

Ch : Char;

begin
try

AssignFile(Temp,FN);

Reset(Temp);

while not System.Eof(Temp) do begin
Read(Temp, Ch);

Write(F, Ch);

end;
CloseFile(Temp);

except
MessageDlg(

'Problem reading file. Did you UNZIP with -d?',

mtInformation,[mbOk], 0);

end;
end;

{ Here's another local procedure to generate a standard
header for each HTML file. If you ever want to change
the headers for all pages on your Web site, change it
here, then regenerate the pages. }

procedure BannerToFile(var F : TextFile);

begin
WriteLn(F,'<HTML>');

WriteLn(F,'<HEAD>');

WriteLn(F,'<TITLE>Art Gallery</TITLE>');

WriteLn(F,'</HEAD>');

{ You can set up background colors
and images in the <BODY> tag. }

WriteLn(F,'<BODY BGCOLOR="#FFFFFF">');

WriteLn(F,

'<CENTER><IMG SRC="banner.gif" HEIGHT=60 WIDTH=400 ',

'ALT="Art Gallery"></CENTER><P>');

end;

{ This procedure will generate index.htm. Since index.htm
doesn't change if you change the database, you don't
really need to use a program to generate it, but this
shows the basic technique of using WriteLn to send text
to the HTML file. }

procedure GenerateIndex;

var
F: TextFile;

begin
try

AssignFile(F,'index.htm');

Rewrite(F);

BannerToFile(F);

WriteLn(F,'<H1>Art Gallery Index</H1>');

WriteLn(F,'You can browse the gallery in four ways:');

WriteLn(F,'');

WriteLn(F,'by Artist');

WriteLn(F,'by Title');

WriteLn(F,'by Price');

WriteLn(F,'MicroGallery');

WriteLn(F,'');

WriteLn(F,'</BODY>');

WriteLn(F,'</HTML>');

finally
CloseFile(F);

end;
end;

{ This procedure will generate artists.htm from the
database, sorted by artist. }
24 March 1997 Delphi Informant
procedure GenerateArtists;

var
F: TextFile;

begin
try

{ To sort by artist, we'll execute a query against
the Artwork table and "order by" the Artist field. }

qArtwork.Close;

qArtwork.SQL.Clear;

qArtwork.SQL.Add('SELECT * FROM Artwork ORDER BY ' +

'Artwork.Artist');

qArtwork.Open;

{ Now that the query is complete, we'll step
through each record of the results, starting
at the first. }

qArtwork.First;

AssignFile(F,'artists.htm');

Rewrite(F);

BannerToFile(F);

WriteLn(F,'<H1>Art Gallery by Artist</H1>');

{ Loop through query results. }
while (not qArtwork.EOF) do begin

{ There are several ways to access a particular
field in Delphi. FieldByName works on TQuery
objects as well as on TTable objects. }

WriteLn(F,'',

qArtwork.FieldByName('Artist').AsString,

'
');

{ The non-breakable space () allows us to
indent these lines in the HTML file. }

WriteLn(F,' ',

qArtwork.FieldByName('Title').AsString,'
');

WriteLn(F,' $',

qArtwork.FieldByName('Price').AsString,'
');

{ Note: next statement is Write instead of WriteLn. }
Write(F,' ');

{ Copy description file from directory and
filename specified in table. We could have
done this using a Memo field, but this
demonstrates how to incorporate external
files in your Web pages. }

CopyAFile(F,qArtwork.FieldByName('Dir').AsString +

'\' +

qArtwork.FieldByName('Filename').AsString

+ '.htm');

{ At the end of each record, we'll place a
horizontal ruler <HR> in the HTML code. }

WriteLn(F,'<HR>');

WriteLn(F);

{ When done with this record, move to the next. }
qArtwork.Next;

end; { While }

{ At end of HTML document, close the <BODY> and
<HTML> tags. This isn't mandatory, but is good
form. It's also a good idea to put your e-mail
address on each Web page; this is a good place
for that. }

WriteLn(F,'</BODY>');

WriteLn(F,'</HTML>');

finally
CloseFile(F);

end;
end;

{ This procedure generates the price.htm file using
the same techniques as above. }

procedure GeneratePrices;

var
F: TextFile;

begin
try

qArtwork.Close;

qArtwork.SQL.Clear;

Informant Spotlight
{ Note that we're sorting by Price this time. }
qArtwork.SQL.Add('SELECT * FROM Artwork ORDER BY ' +

'Artwork.Price');

qArtwork.Open;

qArtwork.First;

AssignFile(F,'price.htm');

Rewrite(F);

BannerToFile(F);

WriteLn(F,'<H1>Art Gallery by Price</H1>');

while (not qArtwork.EOF) do begin
WriteLn(F,

'$',qArtwork.FieldByName('Price').AsString,

'
');

WriteLn(F,' ',

qArtwork.FieldByName('Title').AsString,'
');

WriteLn(F,' by ',

qArtwork.FieldByName('Artist').AsString,'
');

Write(F,' ');

CopyAFile(F,qArtwork.FieldByName('Dir').AsString +

'\' +

qArtwork.FieldByName('Filename').AsString

+ '.htm');

WriteLn(F,'<HR>');

WriteLn(F);

qArtwork.Next;

end;
WriteLn(F,'</BODY>');

WriteLn(F,'</HTML>');

finally
CloseFile(F);

end;
end;

{ Generate both titles.htm and gallery.htm. }
procedure GenerateTitlesAndThumbs;

var
F,G: TextFile;

begin
try

qArtwork.Close;

qArtwork.SQL.Clear;

{ Since titles.htm and gallery.htm are both sorted by
title, we can use the same procedure to generate
them. This saves us from doing another query and
looping through another time--potentially a large
savings for a large database. }

qArtwork.SQL.Add('SELECT * FROM Artwork ORDER BY ' +

'Artwork.Title');

qArtwork.Open;

qArtwork.First;

AssignFile(F,'title.htm');

Rewrite(F);

BannerToFile(F);

WriteLn(F,'<H1>Art Gallery by Title</H1>');

AssignFile(G,'gallery.htm');

Rewrite(G);

BannerToFile(G);

WriteLn(G,'<H1>Micro Gallery</H1>');

while (not qArtwork.EOF) do begin
WriteLn(F,'',

qArtwork.FieldByName('Title').AsString,

'
');
25 March 1997 Delphi Informant
WriteLn(F,' by ',

qArtwork.FieldByName('Artist').AsString,

'
');

WriteLn(F,' $',

qArtwork.FieldByName('Price').AsString,

'
');

Write(F,' ');

CopyAFile(F,qArtwork.FieldByName('Dir').AsString+'\'

+qArtwork.FieldByName('Filename').AsString

+'.htm');

WriteLn(F,'<HR>');

WriteLn(F);

WriteLn(G,'<A HREF="',

qArtwork.FieldByName('Dir').AsString,'/',

qArtwork.FieldByName('Filename').AsString,

'.jpg">','<IMG SRC="',

qArtwork.FieldByName('Dir').AsString,'\',

qArtwork.FieldByName('Filename').AsString,

'.gif" ALIGN=LEFT>');

WriteLn(G,' ',

qArtwork.FieldByName('Title').AsString,

'
');

WriteLn(G,' by ',

qArtwork.FieldByName('Artist').AsString,

'
');

WriteLn(G,' $',

qArtwork.FieldByName('Price').AsString,

'
');

Write(G,' ');

CopyAFile(G,qArtwork.FieldByName('Dir').AsString+'\'

+qArtwork.FieldByName('Filename').AsString

+'.htm');

WriteLn(G,'<HR>');

WriteLn(G);

qArtwork.Next;

end;
WriteLn(F,'</BODY>');

WriteLn(F,'</HTML>');

finally
CloseFile(F);

CloseFile(G);

end;
end;

begin { The btnGenerateClick method. }
{ Disable button and change cursor to hourglass while

pages are being generated. }
btnGenerate.Enabled := False;

Screen.Cursor := crHourglass;

try
GenerateIndex;

GenerateArtists;

GeneratePrices;

GenerateTitlesAndThumbs;

Screen.Cursor := crDefault;

MessageDlg('HTML files created!',

mtInformation,[mbOk],0);

finally
Screen.Cursor := crDefault;

{ Change cursor back. }
btnGenerate.Enabled := True; { Re-enable button. }

end;
end; // btnGenerateClick method

End Listing Three

26 March 1997 Delphi Informant

DBNavigator
Delphi 1 / Delphi 2

By Cary Jensen, Ph.D.

Figure 1: Prope
2 only).

Prope

Active

ComponentCou

ComponentInde

Components

ExeName

Handle

HelpFile

Hint

HintColor

HintHidePause

HintPause

HintShortPause

Icon

MainForm

Name

Owner

ShowHint

Tag

Terminated

Title

UpdateFormatS
In last month’s DBNavigator, you learned of three special instance vari-
ables that Delphi automatically declares for your applications. These

variables, named Application, Screen, and Session, correspond to
instances of the TApplication, TScreen, and TSession classes, respectively.
To accompany last month’s discussion of the Screen instance variable, this
month’s installment takes a closer look at the Application variable by con-
sidering a number of interesting techniques that employ the TApplication
class methods and properties.

The TApplication Class
Bonus Functionality Right under Your Nose
r

n

x

 *

 *

e

Unlike the Screen instance variable, whose
existence is not obvious, the presence of the
Application variable is hard to ignore; all
applications contain at least two references to
it in the project source (three in Delphi 2).
Specifically, every form-based application
ties, methods, and events of TApplication (* Delphi

rties Methods Events

Create OnActivate

t CreateForm OnDeactivate

Destroy OnException

FindComponent OnHelp

Free OnHint

HandleException OnIdle

HandleMessage * OnMessage

HelpCommand

HelpContext

HelpJump

InsertComponent

MessageBox

Minimize

NormalizeTopMost

ProcessMessages

RemoveComponent

Restore

RestoreTopMost

Run

ShowException

ttings * Terminate
calls, at a minimum, two TApplication meth-
ods, CreateForm and Run (Delphi 2 applica-
tions may also call the TApplication method
Initialize). CreateForm is used to create the
main form of the application (in addition to
all other auto-created forms), Run executes
the application, and Initialize calls an
InitProc, if one is defined.

The TApplication class, which is declared in
the Forms unit, declares the properties,
methods, and event properties shown in
Figure 1. The use of the TApplication class is
demonstrated in this article through a series
of example projects. These projects show you
how you can identify the directory in which
your application is running, how and why to
process Windows messages within your
application, how to respond to your applica-
tion’s loss of focus, and how to replace your
application’s default exception handler.

Pinpointing Your Application
The ExeName property of the TApplication class
returns a string that identifies the fully qualified
path of your application. Using the
ExtractFilePath function, defined in the SysUtils
unit, you can identify the directory in which
your application is stored. The
EXENAME.DPR project demonstrates the use
of the ExeName property. The form shown in

Figure 2: The EXENAME.DPR project.

DBNavigator
Figure 2 contains two Labels and two Edits. The following code
is associated with this form’s OnCreate event handler:

Edit1.Text := Application.ExeName;

Edit2.Text := ExtractFilePath(Application.ExeName);

As a result, Edit1 displays the fully qualified name of the run-
ning application, while Edit2 displays the path-only part.

Using the ExeName property is particularly useful in local
database applications where you store your data either in the
same directory as your executable, or in a subdirectory of that
directory. For example, the following code will point the Table
component named Table1 to a table named APPDATA.DB,
located in a “Data” subdirectory that resides immediately
under your application’s directory; it will then open that table:

Table1.DatabaseName :=

ExtractFilePath(Application.ExeName) + 'Data';

Table1.TableName := 'APPDATA.DB';

Table1.Open;

Using ProcessMessages
You use the TApplication method ProcessMessages to tem-
porarily suspend the execution of your application so that
Windows has an opportunity to process messages in its
message queue. This statement can play an important role
under Windows 3.1x, which is a cooperative multitasking
environment. Here, calling Application.ProcessMessages per-
mits the processing of messages that apply to the current
application, as well as those intended for other running
applications. This use of Application.ProcessMessages is
often referred to as a yield.

Since Windows 95 and Windows NT are preemptive oper-
ating systems (where the OS ensures other applications
receive CPU time without your application specifically
yielding control), you might think this method is obsolete.
However, Application.ProcessMessages remains very useful.

Contrary to the way Application.ProcessMessages works
under Windows 3.1x, the use of this method under Win32
does not affect the execution of other applications.
However, it still serves to instruct Windows to respond to
all messages in the Windows message queue for the current
application. Consequently, this method is invaluable when
your current application is performing a processor-intensive
operation, but needs to respond to Windows messages such
as those that repaint your application’s forms.

The following example demonstrates an appropriate use of
Application.ProcessMessages in a Delphi 2 application.
27 March 1997 Delphi Informant
Imagine that your client/server application displays a
splash screen during startup. If you use the TForm method
Show to display your splash screen immediately before
attempting to open the Main form of the application,
Windows won’t complete the painting of your splash
screen before beginning the server login process. The
result is that your splash screen won’t get painted properly.
To remedy this problem, call Application.ProcessMessages
immediately after calling the splash screen’s Show method,
but before calling the Application.CreateForm method for
the application’s main form.

This technique is demonstrated in the project named SPLASH:

program Process;

uses
Forms,

Process1 in 'PROCESS1.PAS' {Form1},
Process2 in 'PROCESS2.PAS' {Splash};

{$R *.RES}

begin
Splash := TSplash.Create(Application);

Splash.Show;

Application.ProcessMessages;

Application.CreateForm(TForm1, Form1);

Application.Run;

end.

The preceding code serves to display the splash screen as a
non-modal form. The following code, which is attached to
the main form’s OnActivate event handler, closes, then
releases (destroys), the splash screen:

procedure TForm1.FormActivate(Sender: TObject);

begin
Splash.Close;

Splash.Release;

end;

Using the OnDeactivate Event Property
Similar to the TScreen class, TApplication publishes several
event properties that permit you to define code that’s
automatically executed in response to events. One of the
lesser known, but useful event properties for an
Application component, is the OnDeactivate event proper-
ty. An event handler assigned to this property is executed
when your application loses focus — that is, when the
user makes another application active.

You can do two particularly interesting things from within
an OnDeactivate event handler. The first is to minimize
your application. This can be achieved simply by calling
the Application component’s Minimize method from with-
in the OnDeactivate event handler:

procedure TForm1.Deactivate(Sender: TObject);

begin
Application.Minimize;

end;

This technique is particularly effective in Windows 95 and
Windows NT, using the compatibility shell. When the user

DBNavigator
moves to another application, your Delphi application
minimizes, becoming a button on the Taskbar.

The second useful thing to do with an application is to ter-
minate it. Obviously, this is only appropriate for a particu-
lar class of application — those that provide system infor-
mation and are of very short duration. A user who finishes
viewing such information might appreciate the ability to
terminate the application by switching to another. This can
be accomplished using the TApplication method Terminate.
For example, you can achieve this effect by adding the fol-
lowing line of code to your Application’s OnDeactivate
event handler:

Application.Terminate;

Note: While you might be inclined to call the procedure
Halt to exit an application, this is not the recommended
technique. Using Application.Terminate is a cleaner, gentler
way to terminate an application. However, Terminate is
not always immediate, because it permits the appropriate
event handlers to execute normally. Halt, on the other
hand, is the procedure you should call when immediate
termination is required. Use Terminate in most cases; but
if you need to abnormally end an application and return
an exit code (an error code that sets the DOS errorcode
variable), use Halt.

While the preceding two examples require very little code,
they do require some preparation. Because you can’t access
a TApplication object at design time, you must create the
header and implementation for the OnDeactivate event
handler manually. Specifically, you must add a procedure to
the published or public section of your form class:

procedure Deactivate(Sender: TObject);

Also, you must implement this procedure in the imple-
mentation section of your form’s unit. The following is an
example of an OnDeactivate event handler that will termi-
nate your application when the user switches to another
application. This event handler is associated with the
TERMINAT.DPR project:

procedure TForm1.Deactivate(Sender: TObject);

begin
Application.Minimize;

end;

Finally, you must assign your defined event handler to the
Application.OnDeactivate property. Typically, this is done
within your main form’s OnCreate event handler:

procedure TForm1.FormCreate(Sender: TObject);

begin
Application.OnDeactivate := Deactivate;

end;

For an example of an application that automatically mini-
mizes when the user switches to another application, down-
load MINIMIZE.DPR (see end of article for details).
28 March 1997 Delphi Informant
Creating an Application-Level Exception Handler
Under normal circumstances, when an exception is raised
either by a run-time error encountered by Delphi, or through
your use of the reserved word raise within your code, your
application branches to the nearest exception-handling rou-
tine. If you have not declared an explicit exception-handling
routine (using try-except), the exception is handled by the
application-level exception handler. This default exception
handler acts to display the exception message to the user,
then destroys the exception object.

Using the Application object, you can replace the default
exception handler with your own by assigning an event han-
dler to the TApplication OnException event property, which is
a TExceptionEvent method pointer. This event handler has the
following syntax:

TExceptionEvent =

procedure (Sender: TObject; E: Exception) of object;

Using this event property, you can define exactly what
happens when an exception occurs. For example, you can
choose to display a message in a status bar, as opposed to
displaying a modal dialog box, or you can write informa-
tion concerning the exception to an error log (a database
or file that stores details concerning encountered errors).

Just as with the OnDeactivate event handler, if you want to
create an OnException event handler, you need to declare it
in your form’s type declaration, as well as implement it in
the unit implementation section. In addition, you must
execute code to assign this event handler to the Application
object’s OnException property. For example, to create an
alternative event handler for the TForm1 class, you need to
add a TExceptionEvent-type procedure to the form’s type
declaration, similar to the following:

procedure ExceptHandler(Sender: TObject; E: Exception);

To assign this exception handler to Application.OnException,
you might use code similar to the following in your main
form’s OnCreate event handler:

procedure TForm1.FormCreate(Sender: TObject);

begin
Application.OnException := ExceptHandler;

end;

The following is an example of a replacement application-
level exception handler. This exception handler tests for
custom-declared exceptions. If the exception is of the type
ECustomWarningException (a custom superclass declared to
organize non-critical exceptions), a sound is generated and
the exception message is displayed in a status bar (Panel2 in
this example). Alternatively, if the exception is of the type
ECustomCriticalException (a superclass to all custom critical
exceptions), the standard exception dialog box is displayed
using the TApplication ShowException method. In this code,
all Delphi-generated exceptions are also displayed using
ShowException:

DBNavigator
procedure TForm1.AppException(Sender: TObject;E: Exception);

begin
if E is ECustomException then

if E is ECustomWarningException then
{ Custom warning exception }
begin

Panel2.Caption := E.Message;

MessageBeep(MB_ICONEXCLAMATION);

end
else

{ Custom critical exception }
Application.ShowException(E)

else
{ Delphi exception }
ShowMessage(E.Message);

end;

As you might have already realized, this type of code is mean-
ingful only to the extent that you pre-declared custom excep-
tions — and consistently used only those exceptions you
declared — when you needed to explicitly raise an exception
from within your code. The following is an example of a type
declaration that demonstrates how the custom exceptions
used in the preceding code might look:

type
ECustomException = class(Exception);
ECustomCriticalException = class(ECustomException);
EMissingLocalTable = class(ECustomCriticalException);
{ Additional custom critical exceptions declared here... }
ECustomWarningException = class(ECustomException);
EFieldException = class(ECustomWarningException);
ERecordException = class(ECustomWarningException);
{ Additional custom warning exceptions declared here... }

It’s important to note that even when you completely
replace your application’s OnException event handler, the
29 March 1997 Delphi Informant
exception object is automatically destroyed by the event.
Also, whenever you replace the default exception handler
by creating an OnException event handler, you’re responsi-
ble for writing code to display the exception to the user.
In other words, the exception dialog box that’s normally
displayed by the default application-level exception han-
dler is not automatically displayed from within an
OnException event handler.

Conclusion
The Application object, like other run-time-only compo-
nents, offers many powerful capabilities that extend and
enhance your Delphi applications. While this component
can be controlled only at run time, as opposed to the
design-time manipulation afforded by those components
that appear on the Component palette, the extra work of
run-time manipulation is almost always worth the advan-
tages provided by TApplication. ∆

The demonstration files referenced in this article are
available on the Delphi Informant Works CD located
in INFORM\97\MAR\DI9703CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including
Delphi In Depth [Osborne/McGraw-Hill, 1996]. He is also Contributing Editor to
Delphi Informant. Cary is a member of the Delphi Advisory Board for the 1997
Borland Developers Conference. You can reach Jensen Data Systems at (713)
359-3311, or via CompuServe at 76307,1533.

30 March 1997 Delphi Informant

OP Tech
Delphi 1 / Delphi 2

By Keith Wood

Figure 1: A ho

const
iRandMultipl

iRandModulus

var
iRandSeed: L

{ Return a ran
Home-grown v
x(i) * a mod

function MyRan

begin
if iRandSeed

iRandSeed

iRandSeed :

Result :

end;
Random numbers are used in many different applications; they add an
element of unpredictability to games, ensuring that something different

occurs each time. They can also be used in approximations and simulations
when trying to model some process.

Random Thoughts
A Look at Generating Random Numbers with Delphi
=

=

Although computers cannot generate truly
random numbers, they can produce seeming-
ly random sequences that, nevertheless, follow
a pattern. From these values, a uniform prob-
ability distribution can be obtained, and from
that, any given distribution can be simulated.

Random-Number Generators
Because a computer is deterministic (i.e. you
can determine its next state given its current
state and the program that’s running), it
cannot produce a true random sequence,
which is, by definition, non-deterministic.
Even so, computers can generate number
sequences that appear to be random —
so-called pseudo-random sequences. A
typical way of doing this is to generate
numbers according to the formula:

ri+1 = (ri x a)mod b
me-grown random-number generator.

ier: LongInt = 31415927;

: LongInt = 27182819;

ongInt;

dom value in the range 0 <= x < 1.
ersion using formula x(i+1) =
 b. }
dom: Real; far;

 = 0 then
:= 1;

 (iRandSeed*iRandMultiplier) mod iRandModulus;

 iRandSeed / iRandModulus;
where the next number is the modulus
(remainder after dividing) of the product of
the current value and a constant a, with a sec-
ond constant b. By choosing appropriate val-
ues for the constants, a reasonable random
sequence occurs. Ideally, the constants should
have no common factors. The values pro-
duced are in the range 0 to b-1 as a result of
the modulus operation, and are converted to a
real value in the range 0 to 1 (but not includ-
ing 1) by dividing by the second constant.

A random-number generator that follows
this model is implemented in the demon-
stration program shown in Figure 1. It uses
the values 31415927 and 27182819 for the
constants a and b. You probably noticed
these are derived from π (pi) and e (natural
logarithms). A special case occurs when the
current random value is zero, shifting the
value to 1. Otherwise the sequence isn’t
random at all!

Delphi also provides a built-in random-
number generator, Random. It can be used as
a function in one of two ways: On its own,
it returns a real value in the range 0 to 1
(excluding 1); and when passed an integer as
a parameter, it returns an integer value in
the range 0 to one less than the parameter.

The demonstration program allows us to
compare the randomness of these two gener-
ators by plotting their distribution across a
number of values (see Figure 2). For a truly

Figure 2: Testing the randomness of a random-number
generator.

OP Tech
random generator and a sufficiently large sample, all values
should be seen an equal number of times.

The checkbox on the right in Figure 2 determines which
of the generators is being used. It sets a variable,
fnRandom, to point to one of the two functions. Because
the built-in generator is a special case (allowing for differ-
ent modes of calling), a proxy function has been defined,
which can be passed as a parameter, BuiltInRandom. This
function simply returns the value from the built-in
version. The appropriate generator can then be referenced
throughout the rest of the code via this variable, without
knowing which generator it is. This can be extended to use
any other random-number generator, provided it returns a
real value in the range 0 to 1 (excluding 1). Note that the
function must be declared with the far directive to allow it
to be passed as a parameter.

The fields on the left in Figure 2 indicate the number of
sample values to generate, and the number of values to
spread the distribution across. A larger number of itera-
tions should smooth out the differences between the
columns.

To translate a random real value less than 1 to an integer
in a given range, the RandomInt function (from the
RandUtil unit) is used. It takes two parameters, the lower
and upper limits of the range. The computation then
returns the corresponding integer value:

{ Return a random integer in the range iLower to iUpper,
inclusive, with equal probability for each value. }

function RandomInt(iLower, iUpper: LongInt): LongInt;

begin
if iUpper < iLower then

raise ERandom.Create(

'Range for random integer is invalid');

Result := Trunc(fnRandom * (iUpper-iLower+1)) + iLower;

end;
31 March 1997 Delphi Informant
The center section of Figure 2 shows the current value of
the seed used to start the random sequence. Pressing the
Randomise button causes this value to be selected at ran-
dom. The home-grown version takes the last seven digits
of the current time in reverse order. The built-in generator
has its own Randomize procedure to achieve a similar
effect. A particular “random” sequence is repeatable by
simply starting at the same seed. This can be useful during
testing, when it can provide a known “random” sequence.

After running some comparisons between the two generators,
the built-in one seems to give a better spread of values, where-
as the home-grown version appears to be slightly biased
toward the bottom end of the range. This bias becomes more
obvious when the number of values being distributed across is
reduced. Because of this apparent bias, the remainder of the
demonstration program uses the built-in generator exclusively.

Distributions
The numbers produced by the built-in generator are real
values in the range 0 to 1 (excluding 1), with each value hav-
ing an equal chance of appearing. This is a uniform probabili-
ty distribution. Many other types of probability distributions
can be used to alter the likelihood of any particular value
being selected. Each can be described by a distribution func-
tion that maps from a uniformly distributed value in the
range 0 to 1, to the desired values. The RandomDistribution
function in the RandUtil unit allows for this mapping to take
place, and returns a value from the specified distribution.

It accepts an array of points that closely approximate the
required distribution. These points are expected to be
monotonically increasing, i.e. the values at each successive
point are at least as large as the preceding ones. When plot-
ted on a graph, these functions never curve downward.

One component of each of these points is the cumulative
probability of its happening, i.e. the probability that this
value, or one less than it, is chosen. As such, the probabili-
ties of the first and last elements in the array must be equal
to 0 and 1, respectively. The other component is the corre-
sponding value that has this cumulative probability.

To map from one to the other, the function generates a uni-
formly distributed value in the range 0 to 1. It then finds the
segment of the distribution function that contains this proba-
bility, and interpolates between the values of the end points
in a linear fashion (see Figure 3).

Of course, this doesn’t give a completely accurate result, because
we are approximating the function by a series of straight line
segments. However, this can be improved by increasing the
numbers of these segments, to more closely follow the curve.

One of the most common distributions is normal distribution,
which has a characteristic bell-shaped curve. It is described by
the equation:

OP Tech

Figure 3: Returning a random value in the given distribution.

{ Select a real value from a specified
probability distribution. }

function RandomDistribution(

recDist: array of TProbDistPoint): Real;

var
i: Integer;

rRandom: Real;

bFound: Boolean;

begin
if (recDist[Low(recDist)].Prob <> 0.0) or

(recDist[High(recDist)].Prob <> 1.0) then
raise ERandom.Create(

'Limits of distribution function must be 0 and 1');

rRandom := fnRandom;

bFound := False;

for i := Low(recDist) + 1 to High(recDist) do begin
if (recDist[i].Prob < recDist[i - 1].Prob) or

(recDist[i].Value < recDist[i - 1].Value) then
raise ERandom.Create(

'Distribution function must increase monotonically');

if not bFound and (rRandom >= recDist[i - 1].Prob) and
(rRandom < recDist[i].Prob) then

begin { Interpolate within this range. }
bFound := True;

Result := (recDist[i].Value - recDist[i-1].Value) *

(rRandom - recDist[i - 1].Prob) /

(recDist[i].Prob - recDist[i - 1].Prob) +

recDist[i - 1].Value;

end;
end;

end;

Figure 4: The normal distribution and its corresponding probability
function.

Figure 5: Generating random values to a given distribution.
ƒ(x) =

for a mean of 0 and a standard deviation of 1. The mean
is the average value, while the standard deviation mea-
sures the spread of the values.

Figure 4 graphs the distribution, based on the previous for-
mula and its corresponding probability distribution function.

The Distribution tab in the demonstration program allows us
to define a probability distribution, then generate sample val-
ues from this distribution for comparison (see Figure 5). The
choices of function include the uniform, normal, and Poisson
distributions, or we can define our own. By dragging the red
boxes up or down, we can alter the underlying distribution.

Note that the function always retains its monotonic character
by forcing following points to be at least as large as the one
being dragged, and preceding points to be at least as small. As

1

√2π
e

x2

2

32 March 1997 Delphi Informant
before, with a larger number of samples, the random values
should more closely follow the specified distribution.

The RandUtil unit also includes the NormalDistribution
function, which takes two parameters: the mean and the
standard deviation of the distribution. It returns a random
real value from the specified distribution. Internally, it uses
the RandomDistribution function, passing it a pre-defined
distribution function. This value is then adjusted for the
mean and standard deviation given:

{ Select a random value from a normal distribution. }
function NormalDistribution(rMean, rStdDev: Real): Real;

begin
if rStdDev <= 0.0 then

raise ERandom.Create(

'Standard deviation must be greater than 0');

Result := RandomDistribution(rNormalDist) * rStdDev+rMean;

end;

Shuffling
A common application of random numbers is in games
where a random ordering of certain objects is required, such
as games that use cards or Mah Jong tiles.

A first attempt at shuffling a deck of cards might involve
stepping through each position in each hand, and picking a
card at random from the deck. We would then need to
ensure that the card chosen had not already been used before
adding it to the current hand. Unfortunately, this strategy is
not guaranteed to terminate. As we get closer to the end of
the hands, the chances of picking a card that hasn’t been
used lessens, and the process takes longer and longer.

We want a way of obtaining the random ordering in a
fixed amount of time. This can be done by imitating the
process of shuffling a deck.

First, we order the cards in an array (the deck). We then
step through each position in the array, and select another
position at random in the remainder of the array. We can

Figure 6: Shuffling and dealing a deck of cards.

{ Deal the cards randomly. }
procedure TfmRandom.btnShuffleClick(Sender: TObject);

const
sValues: String[13] = 'A23456789TJQK';

sSuits: array [1..4] of string[8] =
('Hearts','Diamonds','Spades','Clubs');

var
i, j, iCard, iHand, iSuit, iValue: Integer;

iCards: array [1..52] of Integer;

begin
{ Initialise the deck. }
for i := 1 to 52 do

iCards[i] := i;

{ Shuffle the cards. }
for i := 52 downto 2 do begin

{ Select one at random from those left. }
j := RandomInt(1, i);

{ And swap with the current one. }
iCard := iCards[i];

iCards[i] := iCards[j];

iCards[j] := iCard;

end;

{ And display. }
for iSuit := 1 to 4 do

for iHand := 1 to 4 do
TLabel(FindComponent('lbl' + sSuits[iSuit] +

IntToStr(iHand))).Caption := '';

for i := 1 to 52 do begin
iHand := (i + 12) div 13;

{ Get the hand, 1-4. }
iSuit := (iCards[i] + 12) div 13;

{ And the suit, 1-4. }
iValue := (iCards[i] - 1) mod 13 + 1;

{ And the value, 1-13. }
with TLabel(FindComponent('lbl' + sSuits[iSuit] +

IntToStr(iHand))) do
Caption := Caption + sValues[iValue];

end;
end;

Figure 7: Dealing the cards.

OP Tech
then swap the positions of these two cards. At the end of
51 steps (no point in processing the last position), we have
a shuffled deck that can be dealt to the players.

This process is shown in Figure 6. First the array of cards is
filled with all the cards. These are represented by integers
from 1 to 52, where the first 13 are the hearts from Ace to
King, then diamonds, spades, and clubs. We then shuffle
the deck by swapping a randomly selected card with the
current one, stepping through each position in turn.

Finally, the cards are dealt, with the first 13 cards going to
the first hand, the second 13 to the second hand, etc. The
card values from these positions in the deck are mapped on a
representation, and displayed on the screen. This is all
demonstrated on the Shuffle tab in the accompanying
demonstration program (see Figure 7). Press the button to
deal the cards, and watch how they seem to fall randomly.
Similar processing can be performed for any sequence that
requires a random ordering.

Approximations
Another use for random numbers is in approximating values
using a random sample. The idea is that we sample a volume
33 March 1997 Delphi Informant
containing the required value, counting those points that sat-
isfy some condition directly related to it. We can then calcu-
late an approximation as the ratio of those points that satisfy
the condition to the total number of samples.

As an example, we can compute an approximate value of π
by observing that the area of a circle of radius 1 is equal to
π. If we place this circle in a bounding square, which has
an area of 4, we have the situation previously outlined,
and shown in Figure 8. We can now pick random points
within the square, calculate their distance from the center,
and count them if less than or equal to 1, i.e. if they fall
within the circle. Comparing this count with the total
number of sample points, and multiplying by 4 gives us an
approximate value of π.

Choosing a random point within the square is straightfor-
ward. If we assume the square is centered on a Cartesian
coordinate grid, then it extends from -1 to +1 in both the
x and y directions. The random-number generator returns
a real value in the range 0 to 1 (excluding 1), which can
be mapped on the required range by multiplying it by 2
and subtracting 1. In more general terms, we multiply by
the difference between the upper and lower bounds of the
range, then add the value of the lower bound. This is
encapsulated in the RandomReal function:

{ Return a random real value such that
rLower <= x < rUpper. }

function RandomReal(rLower, rUpper: Real): Real;

begin
if rUpper < rLower then

raise ERandom.Create(

'Range for random real is invalid');

Result := fnRandom * (rUpper - rLower) + rLower;

end;

Generating two values in the range -1 to +1 gives us a
point in the square. We then calculate its distance from the
center by adding the squares of the two values, and count
it if it falls inside the circle.

Figure 8: Approximating
π using a random sam-
ple of points in a square
with sides of length 2.

OP Tech

Figure 10: Simulating a queue of people at a bank.

Figure 9: Approximating π with a random-number generator.
The PI tab in the demonstration program illustrates this
process (see Figure 9).

After entering the number of sample points to test, the
program calculates an approximation as previously
described, and displays the results. It also provides visual
feedback of the process by plotting the points on the
screen. Those inside the circle are colored red, while those
outside are black.

As the number of sample points grows larger, the value
computed for π should converge to 3.14159. At smaller
numbers of points, the approximation can vary widely.

Simulations
Simulation is our final example of using random numbers.
Almost any process can be simulated on a computer, allowing
us to model a situation, and by changing certain parameters,
alter its outcomes.

The process we are simulating is that of a queue of people
waiting to be served at a number of outlets, such as tellers
in a bank.

The parameters that control this process are the distribution
of the arrival time of the people, the distribution of their
service times, and the number of service points available.

Arrival and service times can be fairly accurately simulated
by a Poisson distribution. This distribution gives the prob-
ability of a certain number of events happening within a
given time period, or alternatively, the probability of hav-
ing to wait a given length of time for an event to occur.

It is governed by the equation:

which returns the probability of x events happening for a dis-
tribution with µ as the average. This clusters values around
the average, but does make it possible for very small or very
large values to occur.

e-µµx

x!
π (x;µ) =
34 March 1997 Delphi Informant
The demonstration program gives you an opportunity to
test your theories on queues.

Go to the Queue tab (see Figure 10). It allows the average
time between arrivals, the average time spent being served,
and the number of service points to be set before starting
the simulation. Then watch as the people arrive, wait in
line if necessary, get served, and leave.

Statistics are accumulated as the process continues, measuring
the percentage of time all service points are being used, the
maximum length of the queue, and the maximum time that
any one person had to wait.

Obviously, we want the utilization to be as high as possi-
ble, with the other two values being as low as possible. Try

OP Tech
different combinations of the parameters to simulate an
early-morning lull, or a lunch-time rush.

Conclusion
Random numbers are used in a wide variety of applications,
providing a degree of unpredictability — or at least the
appearance of it — in an otherwise deterministic process.
The demonstration program shows several applications of
random numbers in differing situations.

Delphi, or more correctly Object Pascal, provides a built-in
random-number generator, which can be manipulated to pro-
duce any probability distribution that we want to use.

The RandUtil unit that accompanies this article imple-
ments many of the common requirements when working
35 March 1997 Delphi Informant
with random numbers, and can easily be included in other
projects. Take a chance. ∆

The demonstration project referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\97\MAR\DI9703KW.

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra. He
started using Borland’s products with Turbo Pascal on a CP/M machine.
Occasionally working with Delphi, he has enjoyed exploring it since it first
appeared. You can reach him via e-mail at kwood@netinfo.com.au or by phone
(Australia) 6 291 8070.

36 March 1997 Delphi Informant

Sights & Sounds
Object Pascal / Delphi 2

By Peter Dove and Don Peer

Figure 1: The TG

TGMP = class(TC
private

{ FFrontBuf
{ FWindowHa
procedure S

{ Sets th
procedure P

{ The Pai
the ba
flip i
wheneve
compone

published
{ Published
property Al

{ The Ali
its 'g
moved

end;

constructor TGM

begin
{ Add the fol
Height := 200

Width := 200

{ Get the hei
ViewHeight :=

ViewWidth :=

end;
Our last installment discussed polygon filling, flat shading, directional light
sources, vectors, normals, bit shifting, and backface removal — features

that take you a step closer to building a 3D, rendered component. This time,
we’ll cover two basic concepts that will move us toward the same end. First,
we’ll change our parents. Then we’ll add a new graphics feature to our 3D
component: texture mapping, or the ability to map textures onto polygons.

Parentage and
Texture Mapping
Delphi Graphics Programming: Part III
u

c
t

r
i

P

Changing Your Parents
This month, we’ll make a fundamental
change to the TGMP object; that is, we’ll
change the object from which TGMP is
inherited. Originally, TGMP was inherited
from TComponent. This was fine except that
the form displayed only a small button, mak-
ing it quite difficult to visualize, at design
MP class and its constructor.

stomControl) { Was TComponent }

fer removed - TGMP has own window & canvas }
ndle removed - TGMP has own window handle }
etBackColor(Value : TColor);

e background color and then calls Paint }
aint; override;
nt procedure is overridden, so we can fill
kground color into the backbuffer, then
 onto the TGMP canvas. This is necessary
r the component gets uncovered by another
nt. }

 declarations }
ign;

gn property's functionality was declared in
eat grandparent' class of TControl. We just
t from the public section to published. }

.Create(AOwner : TComponent);

lowing }
;

;

ght and width of the window }
Height;

 Width;
time, how the screen would look. Wouldn’t it
be great to simply drop a TGMP window
onto the form, rather like a TImage? Well, we
can; all we need to do is inherit from class
TCustomControl.

TCustomControl combines two things: a win-
dow with a handle and a TCanvas. This
solves our visualization problem and gives
the component much more flexibility. We
can now place the component on a panel
and align it just as we would align panels to a
form, giving us all the drawing functionality
we need. Figure 1 shows the required dele-
tions, additions, and modifications to the
TGMP class and its constructor. We’ve also
added a few new procedures and record
structures that we’ll explain as we go.

Next, we need to handle a Windows message
to manage some aspects of resizing the control:

procedure TGMP.WMSize(var Message: TWMSize);
begin

inherited;
{ Get height and width of window }
ViewHeight := Height;

ViewWidth := Width;

{ Set bitmap's height }
FBackBuffer.Height := ViewHeight;

FBackBuffer.Width := ViewWidth;

{ Set up viewport }
HalfScreenHeight := ViewHeight div 2;

HalfScreenWidth := ViewWidth div 2;

end;

Figure 2: Freshen your drink? A texture-mapped cube.

Sights & Sounds

Figure 3: By the numbers; mapping texture coordinates onto
polygons.

Figure 4: The modified TRenderMode.

{ Types }
TRenderMode =

(rmWireframe,rmSolid,rmSolidShade,rmSolidTexture);

TBitmapStorage = array[0..127,0..127] of TColor;

{ Private data member }
FCurrentBitmap : TBitmapStorage;

{ Public declarations }
procedure SetCurrentBitmap(Bitmap : TBitmap);
{ Implementation }
procedure TGMP.SetCurrentBitmap(Bitmap : TBitmap);

var
X, Y : Integer;

begin
with Bitmap.Canvas do

for X := 0 to 127 do
for Y := 0 to 127 do

FCurrentBitmap[x,y] := Pixels[X,Y];

end;

{ Add to var statement }
TextureStart, TextureEnd : TPoint;

{ Add after rmSolidShade part of case statement }
SolidTexture :

begin
RemoveBackfacesAndShade(Object3D);

OrderZ(Object3D);

for X := 0 to Object3D.NumberPolys - 1 do
with Object3D.PolyStore[x] do

begin
{ If backface then don't bother rendering }
if not visible then

Continue;

ClearYBuckets;

//***** Texturing for triangle *********
if NumberPoints = 3 then

begin
TextureStart.X := 63; TextureStart.Y := 0;

TextureEnd.X := 0; TextureEnd.Y := 127;

DrawLine3DTexture(Point[0], Point[1],

TextureStart, TextureEnd);

TextureStart.X := 0; TextureStart.Y := 127;

TextureEnd.X := 127; TextureEnd.Y := 127;

DrawLine3DTexture(Point[1], Point[2],

TextureStart, TextureEnd);

TextureStart.X := 127; TextureStart.Y := 127;

TextureEnd.X := 63; TextureEnd.Y := 0;

DrawLine3DTexture(Point[2], Point[0],

TextureStart, TextureEnd);

end
else

//***** Texturing for Quad *********
begin

TextureStart.X := 127; TextureStart.Y := 0;

TextureEnd.X := 0; TextureEnd.Y := 0;

DrawLine3DTexture(Point[0], Point[1],

TextureStart, TextureEnd);

TextureStart.X := 0; TextureStart.Y := 0;

TextureEnd.X := 0; TextureEnd.Y := 127;

DrawLine3DTexture(Point[1], Point[2],

TextureStart, TextureEnd);

TextureStart.X := 0; TextureStart.Y := 127;

TextureEnd.X := 127; TextureEnd.Y := 127;

DrawLine3DTexture(Point[2], Point[3],

TextureStart, TextureEnd);

TextureStart.X := 127; TextureStart.Y := 127;

TextureEnd.X := 127; TextureEnd.Y := 0;

DrawLine3DTexture(Point[3], Point[0],

TextureStart, TextureEnd);

end;
{ Scan Convert Texture Buckets }
RenderYBuckets;

end; { End of with block }
end; { End of rmSolidTexture block }

Figure 5: Adding two new TPoint variables.
TGMP is a window that can be resized. It also has a back-
buffer that mirrors the size of the front window; every time
the user resizes the window, we have to resize our backbuffer
to match. Notice the call to inherited; this makes sure that
the resize message gets passed on for any default handling
done by its ancestors. That’s all there is to it! Of course, mes-
saging can get a little more complicated; if you want to learn
more about the intricacies of messaging, read Developing
Custom Delphi Components by Ray Konopka [Coriolis Group
Books, 1996]. This book offers good insights into using mes-
sages in relation to your own components.

Taking the Rough with the Smooth
Texture mapping is an efficient way of simulating compli-
cated objects by minimizing the number of polygons.
Every polygon you use has to go through many calcula-
tions — as demonstrated in the
previous installment — involving normals, lighting, and
rotation. See Figure 2 for an example of a texture-mapped
cube.

The gaming community and the authors of books about 3D
graphics make a big deal over the difficulty and computational
expense of texture mapping. Well, the good news is that texture
mapping is actually easy — and reasonably fast. The bad news
is that the example we’ll show you runs quite slowly because
we’ve reached the limits of the Graphical Device Interface
(GDI). This will all be rectified in next month’s article, when
37 March 1997 Delphi Informant

Sights & Sounds

procedure TGMP.DrawLine3DTexture(var StartPoint, EndPoint :

TPoint3D; var TextStart, TextEnd : TPoint);

var
NewStartPoint, NewEndPoint : TPoint;

begin
NewStartPoint.X := HalfScreenWidth + Round(StartPoint.X *

ViewingDistance / (StartPoint.Z + ZDistance));

NewStartPoint.Y := Round(HalfScreenHeight - StartPoint.Y *

ViewingDistance / (StartPoint.Z + ZDistance));

NewEndPoint.X := HalfScreenWidth + Round(EndPoint.X *

ViewingDistance / (EndPoint.Z + ZDistance));

NewEndPoint.Y := Round(HalfScreenHeight - EndPoint.Y *

ViewingDistance / (EndPoint.Z + ZDistance));

case RenderMode of
rmSolidTexture : DrawLine2DTexture(NewStartPoint,

NewEndPoint,TextStart,TextEnd);

end;
end;

procedure TGMP.DrawLine2DTexture(var StartPoint, EndPoint,

TextStart, TextEnd : TPoint);

var
CurrentX, XIncr : Single;

TextX, TextY, TextXIncr, TextYIncr : Single;

Y , Length : Integer;

TempPoint : TPoint;

begin
{ No point in drawing horizontal lines! The rest of the

polygon will define the edges. }
if StartPoint.Y = EndPoint.Y then

Exit;

{ Swap if Y1 is less than Y2, so we are always drawing
from top to bottom }

if EndPoint.Y < StartPoint.Y then
begin

TempPoint := StartPoint;

StartPoint := EndPoint;

EndPoint := TempPoint;

TempPoint := TextEnd;

TextEnd := TextStart;

TextStart := TempPoint;

end;
Length := (EndPoint.Y - StartPoint.Y) + 1;

{ Xincr is how much the X must increment
through each Y increment }

XIncr := (EndPoint.X - StartPoint.X) / Length;

CurrentX := StartPoint.X;

Figure 6: The DrawLine3DTexture and DrawLine2DTexture methods.

{ Work out the TextX Increment and TextY Increment }
TextXIncr := (TextEnd.X - TextStart.X) / Length;

TextYIncr := (TextEnd.Y - TextStart.Y) / Length;

TextX := TextStart.X;

TextY := TextStart.Y;

{ Loop through the Y values and fill the YBuckets }
for Y := StartPoint.y to EndPoint.y do begin

{ YBuckets := 0 to 479 must not be greater than 479 }
if Y > 479 then

Break;

{ YBuckets := 0 to 479 must not be less than 0 }
if Y >= 0 then

{ All YBuckets are initialized to -16000 }
if YBuckets[Y].StartX = -16000 then

begin
YBuckets[Y].StartX := Round(CurrentX);

YBuckets[Y].EndX := Round(CurrentX);

TextureBuckets[Y].StartPosition.X :=Round(TextX);

TextureBuckets[Y].StartPosition.Y :=Round(TextY);

TextureBuckets[Y].EndPosition.X :=Round(TextX);

TextureBuckets[Y].EndPosition.Y :=Round(TextY);

end
else

begin
if CurrentX > YBuckets[Y].EndX then

begin
YBuckets[Y].EndX := Round(CurrentX);

TextureBuckets[Y].EndPosition.X :=

Round(TextX);

TextureBuckets[Y].EndPosition.Y :=

Round(TextY);

end;
if CurrentX < YBuckets[Y].StartX then

begin
YBuckets[Y].StartX := Round(CurrentX);

TextureBuckets[Y].startPosition.X :=

Round(TextX);

TextureBuckets[Y].startPosition.Y :=

Round(TextY);

end;
end;

CurrentX := CurrentX + XIncr;

TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

end;
end;
we move away from the GDI and into Device Independent
Bitmaps (DIBs), which will allow us to draw directly into their
memory, resulting in much faster texture mapping.

There are two basic types of texture mapping: linear and per-
spective. Perspectively correct texture mapping is the mathe-
matically pure version, in which every pixel is divided by its z
value to obtain the correct perspective for every pixel along
the line. As you may recall from the previous articles, we
worked out the 2D points by dividing the x,y value by the z
value, then interpolated between those converted points to
draw the line. This is fine with solid drawing, but results in
slight warping of a texture when the polygon is large and a
lot of interpolation occurs. On the other hand, hardly any
difference is apparent between linear and perspective texture
mapping on small polygons. The TGMP rendering compo-
nent will use linear texture mapping, because it delivers quali-
ty results at a reasonable speed (but not with the GDI).
38 March 1997 Delphi Informant
As you may have realized, our TGMP rendering component
allows only for quads and triangles; so we’ll first explain how to
texture-map quads. This is the easiest place to start — map-
ping a square, 2D texture onto a 3D quad, and applying the
mapping after the 3D quad has been converted to 2D screen
coordinates. Therefore, we want to introduce the idea of tex-
ture coordinates. Initially, we’ll limit our texture to 128 by 128
pixels. (In the next article, we’ll explain how to support any
size, although we suspect that you’ll work that out for yourself.)
Figure 3 shows a texture on the right and a quad polygon on
the left. It also shows the x, y, z coordinates on the polygon.

Let’s say that we “knew” the distance on the screen
between polygon point A and point B was 10 pixels, and
that we wanted to map the texture on the right directly on
the polygon. We would pick 10 textured pixels evenly
spaced from 0, 0 to 127, 0 and apply them to the poly-
gon. We’ll demonstrate this with some programming

procedure TGMP.RenderYBuckets ;

var
Y, I, Length : Integer;

TextX, TextY, TextXIncr, TextYIncr : Single;

begin
if RenderMode <> rmSolidTexture then

begin
for Y := 0 to 479 do

if YBuckets[Y].StartX <> -16000 then
DrawHorizontalLine(Y, YBuckets[Y].StartX,

YBuckets[Y].EndX);

end
else

// ********** This deals with texturing *************
for Y := 0 to 479 do

if YBuckets[Y].StartX <> -16000 then
begin

{ Work out how long the scan line is }
length := (YBuckets[Y].EndX-YBuckets[Y].StartX)+1;

{ Work out X, Y increments to go from the start
texture coordinate to end texture coordinate }

TextXIncr := ((TextureBuckets[Y].EndPosition.X -

TextureBuckets[Y].StartPosition.X))/length;

TextYIncr := ((TextureBuckets[Y].EndPosition.Y -

TextureBuckets[Y].StartPosition.Y))/length;

{ The current coordinates }
TextX := TextureBuckets[Y].StartPosition.X;

TextY := TextureBuckets[Y].StartPosition.Y;

{ Step through texture coordinates and draw them }
for I := YBuckets[Y].StartX to YBuckets[Y].EndX do

begin
SetPixel(FBackBuffer.Canvas.Handle,I, Y,

FCurrentBitmap[Round(TextX),Round(TextY)]);

TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

end;
end;

end;

TForm1 = class(TForm)
public

MyBitmap : TBitmap;

end;

procedure TForm1.FormShow(Sender: TObject);

begin
{ Allocate memory for bitmap }
MyBitmap := TBitmap.Create;

{ Load bitmap }
MyBitmap.LoadfromFile('tgmp.bmp');

GMP1.SetCurrentBitmap(MyBitmap);

end;

procedure TForm1.FormDestroy(Sender: TObject);

begin
{ Free memory allocated for the bitmap }
MyBitmap.Free;

end;

Figure 8: The bitmap loads after memory is allocated in the
FormShow procedure.

Figure 7: The RenderYBuckets procedure.

Sights & Sounds
examples, but first we need to define a record where we
can store the texture coordinates as we draw the lines of
the polygon:

TTextureBucket = record
StartPosition, EndPosition : TPoint;

end;

We also need to place this data member in the private section
of TGMP:
39 March 1997 Delphi Informant
{ 480 is maximum screen height }
TextureBuckets : array[0..479] of TTextureBucket;

This data member is similar to the YBuckets we discussed last
month. This similarity is required because we’ll want to
record the changes in the texture coordinates as we move
through the Y scan lines. Now we can add a new texture
mode that will include the texturing and also create a struc-
ture to hold the texture map. Figure 4 shows the modified
type TRenderMode with the new mode added, and the type
TBitmapStorage, which is a holder for the texture map. This is
followed by the private declaration of the bitmap data mem-
ber FCurrentBitmap and the public declaration for the proce-
dure SetCurrentBitmap, which is used to set the bitmap.
Beneath the listed declarations is the implementation of the
SetCurrentBitmap procedure.

The procedure SetCurrentBitmap takes a bitmap and assigns
all the pixels into the array FCurrentBitmap. The reason we
decided to do this, rather than take a pointer to the bitmap,
is that it’s much faster to access an array than to get the indi-
vidual pixels via Bitmap.Canvas.Pixels[X,Y]. By creating this
array in advance, we can expedite our access to the pixel col-
ors at the cost of only a small area of memory. Next, we must
add two new variables of type TPoint — namely TextureStart
and TextureEnd — to the procedure RenderNow, then add
additional code to RenderNow for processing that will deal
with the texture mapping mode (see Figure 5).

In Figure 5, we have a new procedure that’s called from with-
in RenderNow: DrawLine3DTexture, which converts the 3D
coordinates to 2D screen coordinates and passes them, along
with the texture coordinates, to DrawLine2DTexture. This is
the procedure that does all the work of mapping the texture
coordinates to the polygon. The code for DrawLine3DTexture
and DrawLine2DTexture is shown in Figure 6.

As you can see, DrawLine2DTexture does a lot of work: It fig-
ures out the beginning of the 2D line and determines the X
increment it must make through every Y step; then it deter-
mines the X and Y increments it must get from the start tex-
ture coordinate to the end texture coordinate in the required
number of Y steps.

If you’ve been following this series, you can see the logical
progression from the previous article’s DrawLine2DSolid pro-
cedure. Last, we need to look at the procedure that actually
draws the polygons on the screen, called RenderYBuckets (see
Figure 7). This, of course, has been changed to cope with the
texturing, but it hasn’t been changed so much that it’s incom-
patible with the previous version in Part II. As you can see
from the section that deals with texturing, the math is simple.
And that’s all there is to texture mapping.

Our Third Application
Our third application uses basically the same code as that in
Part II. The only major modifications were made to provide
the Solid Texture menu option and to declare MyBitmap. As
you can see in Figure 8, the bitmap is loaded after memory

Sights & Sounds
is allocated in the FormShow procedure. The memory that’s
allocated for the bitmap is eventually freed in the
FormDestroy procedure. The complete source listing for our
third application, developed with the TGMP component, is
available on this CD.

Hints and Harbingers
Remember to set your display driver to 16-bit color rather
than 256 colors; otherwise you’ll think we’ve applied a
“mud” texture! We’ve deliberately stuck with 16-bit color
this month so that we don’t have to worry about palettes;
and we’ll stay with 16-bit color for a while before we move
on. The benefit of moving to a 256-color platform is
speed; there’s a lot less image data to move around,
although considerably more effort is required to apply tex-
tures.

Next month, we’ll create a 3D data file reader for polygon
files and move on to using DIBs. This will make TGMP
supersonic and remove the current GDI bottleneck. DIBs
will also take us into the realm of using pointers with
40 March 1997 Delphi Informant
Delphi and bit manipulation. Finally, we’ll rewrite some of
the drawing routines, using our own pointers to draw
directly into memory, and close by adding shading to this
month’s texture mapping algorithm. ∆

References
LaMothe, A., Black Art of 3D Game Programming
[Waite Group Press, 1995].

The files referenced in this article are available on
the Delphi Informant Works CD located in
INFORM\97\MAR\DI9703DP.

Peter Dove is a Technical Associate with Link Associates Limited and a partner in
Graphical Magick Productions. He can be reached via the Internet at
peterd@graphicalmagick.com.

Don Peer is a Technical Associate for Greenway Group Holdings Inc. (GGHI) and a
partner in Graphical Magick Productions. He can be reached via the Internet at
dpeer@graphicalmagick.com.

41 March 1997 Delphi Informant

At Your Fingertips
Delphi / Object Pascal

By Robert Vivrette

procedure Del

var
SearchRec

JustPath

Found

Response

begin
JustPath :=

Found :=

while Found

with Sear

Respons

if Pro

Resp

Me

case R

mrCa

mrYe

end;
Found

end;
FindClose(S

end;

Figure 1: A p
specification.
Wildcard Specs, etc.
Delphi Tips and Techniques
et

:

:

:

:

c

e

mp

on

ss

es

nc

s

:=

e

r

How can I delete files based on a
wildcard specification?
You may have already noticed that Delphi’s
principal file management routines generally
only allow file operations on a single file at a
time, e.g. the DeleteFile function will only
delete one file.

The key to this trick is to use the FindFirst and
FindNext functions to loop through all files in
a directory that match a certain wildcard speci-
fication. The procedure in Figure 1 accepts a
wildcard specification, and a Boolean value to
indicate whether the user should be prompted
for each file deletion. The procedure uses
FindFirst to look for the first file that matches
the wildcard. If it finds one, it shows a confir-
mation dialog box (if the Prompt Boolean is
eFileWithMask(Path: string; Prompt: Boolean);

TSearchRec;

string;
Integer;

Integer;

ExtractFilePath(Path);

FindFirst(Path,faArchive,SearchRec);

= 0 do
hRec do begin
 := mrYes;

t then
se :=

ageDlg('Delete File?'+#13+JustPath+Name,

mtWarning,mbYesNoCancel,0);

ponse of
el : Break;

 : if not DeleteFile(JustPath+Name) then
MessageDlg('Error Deleting File',

mtError,[mbOK],0);

 FindNext(SearchRec);

archRec);

ocedure to delete files based on a wildcard
set). If the file is to be deleted, then a call is
made to DeleteFile to erase the file. The
FindNext function is called to get the next file,
and so on, until no files are found.

Note that with the user prompt turned off, this
routine could easily delete all files in a directory
in a fraction of a second. Therefore, care should
be taken when implementing any facility for
mass deletion of files within a program.

A call to the procedure would look some-
thing like this:

procedure TForm1.BitBtn1Click(Sender: TObject);

begin
DeleteFileWithMask(Edit1.Text,

CheckBox1.Checked);

end;

See Figure 2 for a sample of its use.
Figure 2:
The Wild
Card File
Deletion
dialog box.
How do I determine the name of a key
that has been pressed?
Occasionally, you might want to obtain a
textual representation of a key that has
been pressed. This can be easily accom-
plished with the GetKeyNameText API call.
Simply trap the WM_KEYDOWN message
on a form as indicated in Figure 3.

When a key is pressed, the message is han-
dled by the WMKeyDown method. We
extract the KeyData field from the message
and pass it into GetKeyNameText, which fills a

Figure 5: Using DisableControls to make multiple changes to a
table occur faster.

unit Unit1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)

Label1: TLabel;

private
procedure WMKeyDown(var Message: TWMChar);

message WM_KeyDown;

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.WMKeyDown(var Message: TWMKeyDown);
var

KeyName : array[0..255] of Char;

begin
if GetKeyNameText(Message.KeyData,KeyName,

SizeOf(KeyName)) > 0 then
Label1.Caption := KeyName;

inherited;
end;

end.

procedure TForm1.AddRecords;

var
a : Integer;

begin
for a := 1 to StrToInt(edtItemsToAdd.Text) do begin

Table1.Append;

Table1.FieldByName('Value1').AsInteger := Random(1000);

Table1.FieldByName('Value2').AsInteger := Random(1000);

Table1.FieldByName('Value3').AsInteger := Random(1000);

Table1.Post;

end;
end;

procedure TForm1.ClearRecords;

begin
Table1.First;

while not Table1.Eof do
Table1.Delete;

end;

procedure TForm1.btnFillClick(Sender: TObject);

begin
if chkDisable.Checked then

begin
Table1.DisableControls;

AddRecords;

Table1.EnableControls;

end
else

AddRecords;

end;

procedure TForm1.btnClearClick(Sender: TObject);

begin
if chkDisable.Checked then

begin
Table1.DisableControls;

ClearRecords;

Table1.EnableControls;

end
else

ClearRecords;

end;

Figure 3: Getting the name of a key that has been pressed.

At Your Fingertips
buffer we have pro-
vided. To show what
key was pressed, this
return value is
assigned to a label
on our sample form.

Note that the value
returned will depend on the keyboard layout currently
defined in Windows. Figure 4 shows the result of
GetKeyNameText.

When I make many rapid changes to a table, my data-
aware controls flicker. How can I stop this?
Often, you may be quickly traversing through the records of a
database to perform some calculations, addition/deletion of
records, etc. Each time the record changes, data-aware controls
are automatically updated by the BDE. Sometimes you aren’t
interested in the appearance of the controls until you are done.

To solve this problem, you can use the DisableControls and
EnableControls methods of the TTable (and also the TQuery
and TStoredProc) objects. DisableControls turns off updates to
data-aware controls linked to the table and EnableControls
turns updates back on.

To illustrate this, the sample application in Figure 5 adds
1,000 records with random values to a table. A DBGrid is
used to show the records of the table. Without using
DisableControls, the grid’s scrollbar will flicker as new

Figure 4: The result of GetKeyNameText.
42 March 1997 Delphi Informant
records are
added or
cleared. The
process often
takes many
times longer
with the con-
trols enabled
(and therefore
updating after
each change). When the controls are disabled, all the con-
trols are updated only once, at the end of all the changes.
Figure 6 shows a use of the DisableControls method in the
DisableControls Demo. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in
INFORM\97\MAR\DI9703RV.

Figure 6: Using DisableControls to expedite
numerous changes to data-aware controls.

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at 76416.1373@compuserve.com.

43 March 1997 Delphi Informant

New & Used
Delphi / Object Pascal

By Robert Vivrette
I f you’re a Delphi programmer, I’ll make this very easy for you. Put down
this magazine. Find your checkbook. Order a copy of BoundsChecker for

Delphi. If you need a little convincing, read on.

BoundsChecker 4.0
NuMega’s Debugging Product for Delphi
BoundsChecker 4.0 for Delphi is one of sev-
eral debugging products developed by
NuMega Technologies. In the past, their
products have been principally for C++ pro-
grammers. However, with version 4.0 of
BoundsChecker, NuMega has moved into
the Delphi arena. BoundsChecker’s principal
purpose is simple: detect and locate program
errors. And believe me, there’s not much that
will evade BoundsChecker’s scrutiny.

Installation is simple, and the package inte-
grates itself nicely into the Tools menu of
Delphi’s IDE. After configuring a few prefer-
ences, you’re ready to go.

So Go
Running BoundsChecker on a Delphi
application is equally straightforward.
Figure 1: BoundsChecker makes its pres-
ence felt by displaying its Notification dialog
box listing the modules your program
needs to start.
First, from Delphi’s menu, select Options |

Project to display the Project Options dia-
log box. Now select the Compiler page.
Click the Debug Information and Stack

Frames check boxes. Then go to the Linker
page and click on Include TDW debug info.
That’s it! Rebuild your program and select
Tools | BoundsChecker.

BoundsChecker hooks into the debugging
information generated during compilation,
and monitors virtually every aspect of your
program. First, you’ll see a window that
identifies the initialization steps your code
is taking (see Figure 1). The information
presented in the Notification dialog box
includes the DLLs that must be loaded to
execute the program. This window displays
the modules your application is relying on
to run properly — many are part of
Windows (e.g. GDI32.DLL and
USER32.DLL).

Your application appears next. It will run
exactly as if it were running outside
BoundsChecker, except it’ll run a little slower.

As you put your program through its paces,
BoundsChecker watches everything that’s
going on. It checks API calls for appropriate
parameters, memory that’s allocated and not
released, and other bad things your program
might be doing. Once you’re done exercising
all your program’s features, quit your applica-
tion to return control to BoundsChecker.
Now the fun begins!

Figure 2: A
badly-behaved
demonstration
program.

Figure 3: The code behind the buttons in the sample application.

procedure TForm1.Button1Click(Sender: TObject);

var
MyBitmap : TBitmap;

begin
MyBitmap := TBitmap.Create;

end;

procedure TForm1.Button2Click(Sender: TObject);

var
A : PChar;

begin
GetMem(A,10);

FillChar(A^,11,#0);

FreeMem(A);

end;

procedure TForm1.Button3Click(Sender: TObject);

var
A : array[0..20] of Char;

B : Pointer;

begin
B := nil;
StrCopy(B,A);

end;

procedure TForm1.Button4Click(Sender: TObject);

begin
SetPriorityClass(GetCurrentProcess(),

IDLE_PRIORITY_CLASS or NORMAL_PRIORITY_CLASS);

end;

procedure TForm1.Button5Click(Sender: TObject);

var
A : PChar;

B : PChar;

begin
A := StrNew('Hi There Folks!');

StrCopy(B,A);

StrDispose(A);

end;

procedure TForm1.Button6Click(Sender: TObject);

var
A : HBitmap;

begin
A := LoadBitmap(hInstance,'SAMPLE');

end;

procedure TForm1.Button7Click(Sender: TObject);

var
A : array[0..10] of Char;

begin
StrCopy(A,'This string is longer than 10 characters.');

end;

New & Used
Buttons Behaving Badly
BoundsChecker takes all the information it collected during
the execution of your program and prepares a detailed report of
all abnormal occurrences (bugs). Each entry will show the line
of code where the bug occurred, and a simple description of
the problem.

To give you a better idea of how BoundsChecker works, I built
the simple, badly-behaved, program shown in Figure 2. Each but-
ton in this application exhibits some unacceptable behavior indi-
cated by the comment on the right of each button. Figure 3
shows the code behind these buttons.

Usually, BoundsChecker will trap errors and report them
when the application terminates. For example, the code
behind the Create A Bitmap button really isn’t a bug until
the application quits. For all the program knows, the appli-
cation might clean this up later.

Sometimes however, BoundsChecker will trap and report
events as the program is running. When this occurs,
BoundsChecker comes to the foreground and asks you
what you want to do about the error. For example, the
code behind the Overrun Memory button immediately
generates an error (see Figure 4). BoundsChecker identifies
the Dynamic memory overrun, and even knows that an
attempt was made to copy 11 bytes of data into 10 bytes
of memory. It also shows the offending source in the
bottom pane.

The center pane shows the sequence of events leading to
the error. Say for example, we didn’t know how the appli-
cation got to Button2Click. (Okay, I suppose the name
would pretty much give it away, but let’s assume for the
sake of argument it was named something else.) The infor-
mation in the center pane shows that we got to the proce-
dure by means of a button click, and that the execution
path traced through several points in the Controls and
StdCtrls units.

Acknowledge or Suppress?
There are several buttons on this dialog box. The
Acknowledge button tells BoundsChecker to log this error
and continue; Info displays information from the
BoundsChecker Help file on this error; Note allows you to
attach a descriptive note to the error; and Halt terminates
the program.
44 March 1997 Delphi Informant
The Suppress button is one of the unique features of
BoundsChecker. It allows you to tell BoundsChecker to
suppress (to varying degrees) further reporting of an error.
When you click it, you will be asked whether to suppress
the error:

just in this function,
in this source file,
in this application or DLL, or
everywhere.

The value of suppressing errors becomes apparent when
you’re dealing with a third-party control or DLL to which
you don’t have the source. This control or DLL might

Figure 4: BoundsChecker detected the Dynamic memory over-
run error raised by selecting the Overrun Memory button.

New & Used

Figure 5: BoundsChecker identifies a resource leak in the
sample program.

Figure 6: The BoundsChecker Events dialog box displays a log
of all the program’s events.
repeatedly generate an error. Suppressing the error allows
you to concentrate on your code without wading through
someone else’s error messages.

Then, armed with this information, you contact the third-
party developer and tell them what BoundsChecker
reported. They’ll be delighted to hear from you — or
they’ll hang up on you!

The error suppression information you enter can be saved
to disk and, as an example, distributed to other members
of your development team. NuMega provides suppression
libraries with BoundsChecker for common “anomalies” in
the Delphi VCL.

After quitting your application, BoundsChecker prepares a
summary report that identifies all trapped errors (see
Figure 5). The information presented is similar to that
previously described, but there will probably be memory
or resource leaks thrown in that aren’t normally detected
until an application is closed.

Some of the principal error detecting “techniques” in
BoundsChecker for Delphi include:

APICheck — Checks arguments passed to and received
from over 5,000 API functions, including Win32, DirectX,
WinSock, and Internet APIs. Errors detected include: bad
pointers, conflicting flags, invalid flags, missing arguments,
out-of-range arguments, uninitialized fields, and uninitial-
ized structure size fields.
WriteCheck — Detects the overwriting of dynamically
allocated memory, local or stack memory, and global or
static memory.
LeakCheck — Detects memory and resource leaks.
PointerCheck — Detects invalid pointer operations such
as: operations on null pointers, pointers that don’t point to
valid data, pointer comparison errors, errors in the use of
function pointers, and attempts to free handles without
unlocking them.
45 March 1997 Delphi Informant
And BoundsChecker doesn’t stop there. Besides detecting run-
time errors, BoundsChecker also allows you to log every detail
of what your program is doing when it runs. BoundsChecker
refers to these as “events.” When they’re enabled, you’ll proba-
bly get more information about your program than you want.

For example, Figure 6 shows only a minuscule segment of
all the events that transpired in the course of launching
and quitting my test application. I would estimate
BoundsChecker placed well over 8,000 events into the top
list box. Note that the item selected in the top pane is a
call to SetScrollInfo (I randomly stopped here in the list).
The arrows in the left margin are visual clues to show you
where the application is going into a procedure or func-
tion, and where it leaves. The middle pane again shows
the source code involved in this event (in this case it’s the
Delphi FORMS.PAS unit). At the bottom of the screen,
you get information on all the parameters that were passed
to this function call. The level of detail in this portion of
BoundsChecker can be frightening at times. Fortunately,
the program provides various “find” and “filter” features
that help manage the incredible mass of information.

New & Used

cker 4.0 for Delphi (Standard Edition) is
, thorough debugging tool that inte-
 the Delphi IDE. It uses the debugging
 generated at compile time to monitor
y aspect of a program. It checks for bad
initialized structure size fields, and
passed to and received from API func-
ts the overwriting of memory; detects
d resource leaks; and detects invalid
rations, just to name a few. It’s a must-
 for the serious Delphi developer.

cker is a platform-specific tool. When
lease specify your current working plat-
ows 95 or Windows NT). NuMega
eased BoundsChecker 4.2. Current own-
on 4.0 can upgrade by purchasing the
r by downloading the upgrade from

eb site.

echnologies Inc.
 West
 03063

03) 889-2386
 889-1135
http://www.numega.com
dard Edition, US$329; Professional
$549. To upgrade from version 4.0 to
ROM, the cost is US$150.
Conclusion
Before using
BoundsChecker, I
was a devout fan of
TurboPower’s Sleuth
program (previously
named MemMonD
for Delphi 1).
Although I still use
Sleuth on occasion,
BoundsChecker is a
far more comprehen-
sive solution to
debugging Delphi
applications.

The version of
BoundsChecker that
I reviewed was the
Standard Edition for
Delphi. The list of
errors caught by this
version (as opposed
to the C++ version) is
quite a bit shorter,
but all the important
ones are there. I am
quite certain that
future versions of
BoundsChecker for
Delphi will narrow
the differences between the two
products.

BoundsChe
an effective
grates with
information
nearly ever
pointers, un
arguments
tions; detec
memory an
pointer ope
have utility

BoundsChe
ordering, p
form (Wind
recently rel
ers of versi
CD-ROM, o
NuMega’s W

NuMega T
9 Townsend
Nashua, NH

Phone: (6
Fax: (603)
Web Site:
Price: Stan
Edition, US
4.2 via CD-
I have very little to say that can be considered negative.
Nothing is perfect, however, so I will mention the only
two issues I have had to-date with BoundsChecker.
46 March 1997 Delphi Informant
First, occasionally, I would debug a program and
BoundsChecker wouldn’t show any source code for certain
units (specifically my units). After tweaking the program
in about three or four areas, BoundsChecker eventually
showed me what I wanted.

Although it’s nothing I couldn’t solve on my own, it would
have been nice to have a little more “hand-holding” in such a
situation. For example, I didn’t know if the source file was
missing; if the program was not compiled with the proper
debug information in it; or if the preferences for
BoundsChecker was causing it to look in the wrong directories.

The second minor issue I had was that it would be nice if
BoundsChecker detected that my program needed compil-
ing and did it for me when I select the BoundsChecker

option from the Tools menu. (I know this can be done
because TurboPower’s Sleuth does it.) As it is, you need to
ensure that the program is completely compiled and that
all source files are saved before launching BoundsChecker.

As you can see, my only two complaints are fairly minor and
easily dismissed given the tremendous capabilities provided
by BoundsChecker.

Now you can put down this magazine, find your checkbook,
and order a copy. ∆

The badly-behaving program referenced in this article is avail-
able on the Delphi Informant Works CD located in
INFORM\97\MAR\DI9703BC.

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at 76416.1373@compuserve.com.

File | New
Directions / Commentary
My column about business objects (in January’s Delphi Informant) seems to have struck a chord
for many readers. Several of you wrote noting your interest in the subject, as well as detailing

how you’re already implementing business objects in Delphi. Take, for example, Peter Roth of
Engineering Objects International, who employs business objects in the engineering field. He notes,
“The most gratifying experience was changing the solution algorithm of a nonlinear dynamic solver
without affecting the rest of the program. When we used to try this in Fortran, we failed utterly.”

Business Objects: The Sequel
We’ve already discussed some of the benefits of business
objects, but let’s dive deeper by looking at some of the key
technical issues involved with using them in Delphi.

Not rocket science. There’s really nothing special about the
code for a business object. It’s like any other object you’ve
used. Take, for example, the TCustomer object shown here:

TCustomer = class(TComponent)
private

FID: string;
FHomeStore: string;
FLastName : string;
FFirstName : string;
FTitle: string;
FSignUpDate: TDateTimeField;

public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;
property ID : string read FID;

property HomeStore : string read FHomeStore;

property LastName : string read FLastName;

property FirstName : string read FFirstName;

property Title : string read FTitle;

property SignUpDate : TDateTimeField read FSignUpDate;

function FullName : string;
procedure PurchaseGoods;

end;

TCustomer’s properties and methods are based on the “real
world,” but it’s defined in code just like a system-level object.

Therefore, the problem isn’t in the architecture of a busi-
ness object — it’s in the storage of the object’s data once it
has been instantiated.

Storage options. One common method of storing object
data is to use streams. In doing so, you can save the state of
an object instance to a file and reload it later. Roth has found
streams to be an effective way to save data, and now requires
each class that he writes “to be able to save and restore itself.”
And while stream-based solutions work well in some con-
texts, they don’t in a typical client/server database application
that includes a large amount of data. Two people cannot
simultaneously access the same objects, so a database manager
is needed to handle data sharing issues.

Alternatively, you can use a relational database to store busi-
ness objects. In the Delphi world, one of the best examples
I’ve seen is in Ray Konopka’s book, Developing Custom Delphi
Components [Coriolis Group Books, 1996]. Konopka shows
an innovative way to create and link business components to
47 March 1997 Delphi Informant
Delphi’s data access components. Indeed, this method works
well for objects that can map to one and only one table in a
database. (For example, the TCustomer object shown earlier
could be mapped to a single record in a Customer table.)

Nonetheless, while some business objects are simple, many
aren’t that easy to handle: namely, composite objects that contain
pointers to other objects. For instance, suppose our TCustomer
object has Orders and Payments as properties, both of which are
arrays of orders or payments the customer has made. Because of
the complexity of the interrelationships between these elements,
we couldn’t use the simple object solution to store this data.

In the real world, it’s not uncommon for objects to span
many tables and require a large number of complex joins to
reassemble them when called. I have yet to see an adequate
generic solution that uses Delphi to store complex objects
using a relational database as the object store.

Lastly, you can opt to use an object database — something
that until recently has been out of reach for Delphi develop-
ers. POET Software Corp.’s POET 4.0 bridges this gap by
providing an OCX interface, enabling Delphi to store instan-
tiated objects in a POET object database. However, while
this is among the better solutions available in terms of OOP
design, you can’t use it alongside Delphi’s built-in data-access
components. Which begs the question: If you wish to build
business objects in Delphi, do you need to abandon Delphi’s
data-aware components? From my experience, I would say so.

Besides the technical challenges we’ve talked about, Matthew
Raffel, an independent consultant from Cumming, GA, noted
his major problem is “management’s lack of motivation to take
the steps necessary to successfully implement business objects.”
He adds, “Many managers see design as too time consuming
and thus, never go beyond screen and database design. Many
[managers] have told me, ‘We don’t have the time for that kind
of design.’ Yet, so much time is lost in rewriting because of a
lack of design around business objects. How can we get our
mangers to see the benefits of designing business objects?”

— Richard Wagner

Richard Wagner is the Chief Technology Officer of Acadia
Software in the Boston, MA area, and Contributing Editor to
Delphi Informant. He welcomes your comments at
rwagner@acadians.com.

	Table of Contents
	Delphi Tools
	HyperTerp 4.0 for Delphi
	Data Junction Version 5.11 Now Available for Windows
	LMD Innovative Releases LMD-Tools Version 2.0
	Nevrona Designs Ships AdHocery and Propel for Delphi
	Books for Sale

	Delphi News
	Borland Adds Informix and DB2 Support to Delphi Client/Server Suite
	Borland Completes Acquisition of Open Environment Corp.
	A Sneak Peak at Borland’s Upcoming Delphi 3
	ObjectSHOW Launches Online Trade Show
	Yocam Joins Borland as Chairman and CEO
	The Solution Works Awarded PSYBT Young Business of the Year
	McGraw-Hill Books Online

	On the Cover
	Component Requirements
	Create the Form and Add Components
	Create the Wrapper
	Modify the Form
	Timing Is Everything
	Compile and Install
	Sample Program
	Not So Fast!
	Take It from Here
	Conclusion
	Listing One

	On the Cover
	Quick and Dirty
	The Moment of Truth
	Nuts and Bolts
	Up and Running — I Think
	The TChangeLink Object
	One Last Thing
	Conclusion

	On the Cover
	Standard Approaches
	Taking Stock
	But Wait, There’s More
	Keyboard Handling in Delphi 2
	EMFForm
	Using EMFForm
	Conclusion
	Listing Two

	Informant Spotlight
	An Online Art Gallery
	Generating Views
	Building the Application
	A Corporate Example
	Conclusion
	Listing Three

	DBNavigator
	Pinpointing Your Application
	Using ProcessMessages
	Using the OnDeactivate Event Property
	Creating an Application-Level Exception Handler
	Conclusion

	OP Tech
	Random-Number Generators
	Distributions
	Shuffling
	Approximations
	Simulations
	Conclusion

	Sights & Sounds
	Changing Your Parents
	Taking the Rough with the Smooth
	Our Third Application
	Hints and Harbingers
	References

	At Your Fingertips
	How can I delete files based on a wildcard specification?
	How do I determine the name of a key that has been pressed?
	When I make many rapid changes to a table, my data-aware controls flicker. How can I stop this?

	New & Used
	So Go
	Buttons Behaving Badly
	Acknowledge or Suppress?
	Conclusion
	Informant Fact File

	File I New

